1. 简单百科
  2. 陈煜

陈煜

理学博士,南京大学,2006.09-2009.02

教授 (博导),陕西师范大学,2015.12-至今

男,博士,教授。2003–2006年期间,师从南京师范大学陆天虹研究员攻读硕士学位,研究方向为燃料电池;2006–2009年期间,师从南京大学郑丽敏教授和夏兴华教授攻读博士学位,研究方向为界面化学和模拟酶生物电化学。博士毕业论文获“2009年度礼来公司亚洲优秀研究生论文奖”二等奖。2009年9月——2013年12月南京师范大学化学环境科学学院工作。2014年4月到2015年4月,新加坡南阳理工大学博士后。2015年陕西师范大学,材料科学与工程学院教授。

从事工作

主要从事结构功能纳米材料的设计合成及其在化学/电化学能量转换技术方面的工作。

(i) 高性能低温燃料电池阴/阳极贵金属纳米晶电催化剂的设计合成。

(ii) 高分子聚合物-贵金属纳米晶有机-无机化合物复合材料的界面结构-催化活性相互关系研究。

(iii)原子厚超薄二维过渡金属/贵金属纳米材料的设计合成及其在水电解池、氮气电化学还原和化学产氢领域中的应用。

(iv)碳材料在金属空气电池和水电解池领域中的应用。

个人简介

近年主持国家自然科学基金、省自然科学基金、中央高校基金等科研项目9项,获授权中国发明专利10项。迄今发表SCI论文120余篇,作为通讯作者在 Chemical Science,Nano 能量,, NPG Asia Materials,ACS Catalysis, Small, Journal of Materials 化学 A, ACS Applied Materials \u0026 Interfaces, Chemistry–A European Journal, Nano Research,Nanoscale等能源/材料期刊发表SCI论文80余篇(包括邀请综述及封面论文)。截止2018年,论文被 ChemicalReviews, ChemicalSocietyReviews, Nano Today等期刊正面引用评价3200余次, 论文H-index为35。其中,单篇引用超过50次的20篇,10篇论文被评为全球ESI高被引(1%)论文。多项研究成果被ChemistryViews,Chemistry World,X-摩尔化学资讯平台   和材料人资讯平台等多个国内外媒体亮点报道。合作编辑《 Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies》2章。

发表论文

2018年

1.PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids towards the oxygen reduction reaction. Advanced Materials Interfaces.2018, 1701322.

2017年

1. Polyallylamine functionalized platinum tripods: Enhancement of hydrogen evolution reaction by proton carriers. ACS Catalysis.2017,7, 452-458.

2.Bimetallic AuRh nanodendrites consisting of Au cores and atomically ultrathin Rh nanoplate shells: Synthesis and light-enhanced catalytic activity. NPG Asia Materials.2017, 9, e407.

3.Polyethyleneimine functionalized platinum superstructures: Enhancinghydrogenevolution 表演 by morphological and interfacial control. Chemical Science.2017, 8, 8411-8418.

4.A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small. 2017, 13, 1702753.

5.Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for 乙醇 electrooxidation. Nano Research.2017, 10, 3324-3332.

6.Ultrathin rhodium oxide nanosheet nanoassemblies: Synthesis, morphological stability, and electrocatalytic application. ACS Applied Materials \u0026 Interfaces.2017, 5, 5646-5650.

7.Rhodium nanosheets-reduced graphene oxide hybrids: A highly active platinum-alternative electrocatalyst for the 甲醇 oxidation reaction in alkaline media. ACS Sustainable 化学 \u0026 Engineering.2017,5, 10156-10162

8. Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal-organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustainable 化学 \u0026 Engineering. 2017, 5, 5646-5650

9.Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction. Journal ofEnergy Chemistry. 2017, 26, 1153-1159.

10.Research advances in unsupported Pt-based catalysts for electrochemical 甲醇 oxidation. Journal ofEnergy 化学2017, 26,1067-1076. (Review)

2016年

1. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catalysis. 2016, 6, 5260-5267.

2. 三明治structured Au@polyallylamine@Pd nanostructures: tuning electronic property of Pd shell for electrocatalysis. Journal of Materials Chemistry A. 2016, 4, 12020-12024.

3. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine driven self-assembly andenhanced electrocatalytic activity. Nano Research. 2016, 9, 755-765.

4. One pot, gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxalic acid oxidation. Nanoscale. 2016, 8, 2875-2880. .

5. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property. Journal of 功率 Sources. 2016, 306, 587-592.

6. Hollow PtNi alloy nanospheres with enhanced activity and 甲醇 tolerance for the oxygen reduction reaction. Nano Research. 2016, 9, 3494-3503.

7. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in the alkaline medium. Nano Research. 2016, 9, 3893-3902.

8. One-pot fabrication of hollow and porous Pd-Cu alloy nanospheres and their remarkably improved catalytic 表演 for the hexavalent chromium reduction. ACS Applied Materials \u0026 Interfaces. 2016,8, 30948-30955.

9. Hydrothermal synthesis and catalytic application of ultrathin rhodium nanosheet nanoassemblies. ACS Applied Materials \u0026 Interfaces. 2016, 8, 33635-33641.

2015年

1. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy. 2015, 12, 824-832.

2. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Materials.2015, 7, e219.

3. Polyhedral Palladiumsilver alloy nanocrystals as highly active and stable electrocatalysts for the formic acid oxidation reaction. Scientific Reports.2015, 5, 13703.

4. A Strategy for fabricating porous PdNi@ Pt core-shell nanostructures and their enhanced activity and durability for the 甲醇 electrooxidation. Scientific Reports. 2015, 5, 7619.

5. Polyethylene亚胺assisted synthesis of high-quality platinum/graphene hybrids: the effect of molecular weight on electrochemical properties. Journal of Materials 化学 A. 2015, 3, 12000-12004.

6. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale. 2015, 7, 4894-4899.

7. Platinum-copper alloy nanocrystals supported on reduced graphene oxide: One-pot synthesis and electrocatalytic applications. Carbon. 2015, 91, 338-345.

8. 乙醇tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: the "molecular window gauze" induced the selectivity for the oxygen reduction reaction. Journal of Materials 化学 A. 2015, 3, 21083-21089.

9. Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Research. 2015, 8, 3963-3971.

2014年

1. Pt-Pd-Co trimetallic alloy network nanostructures with superior electrocatalytic activity towards the oxygen reduction reaction. 化学 – A European Journal.2014, 20, 585-590.

2. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and 乙醇tolerant oxygen reduction electrocatalysts. Nanoscale. 2014, 6, 8226-823.

3. Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the 甲醇 oxidation reaction. Nanoscale. 2014, 6, 12310-12314.

4. Multi-generation overgrowth induced synthesis of three-dimensional highly branched Palladium tetrapods and their electrocatalytic activity for formic acid oxidation. Nanoscale. 2014, 6, 2776-2781.

5. Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties. Nanoscale. 2014, 6, 9273-9278.

6. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Research. 2014, 7, 1205-1214.

7. Arginine-assisted synthesis and catalytic properties of single-crystalline Palladium tetrapods. ACS Applied Materials \u0026 Interfaces. 2014, 6, 22790-22795.

8. Autocatalysis and selective oxidative etching induced synthesis of platinum–copper bimetallic alloy nanodendrites electrocatalysts. ACS Applied Materials \u0026 Interfaces. 2014, 6, 7301-7308.

9. A ruthenium(iii) phosphonate complex on polyallylamine functionalized carbon nanotube multilayer films: self-assembly, direct electrochemistry, and electrocatalysis. Journal of Materials 化学 B. 2014, 2, 102-109.

10. Pd@Pt core–shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A.2014, 2, 20855-20860.

11. Facile synthesis of Pd-Co-P ternary alloy network nanostructures and their enhanced electrocatalytic activity towards hydrazine oxidation. Journal of Materials 化学 A. 2014, 2, 1252-1256.

2013年

1. 液态水based synthesis and sensing application of polyallylamine functionalized platinum nanodendrite assemblies. Journal of Materials Chemistry A. 2013, 1, 14874-14878.

2. One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable 甲醇tolerant ability in acid media. The Journal of Physical Chemistry C. 2013, 117, 9826-9834.

3. Polyallylamine functionalized Palladium icosahedra: One-pot 液态水based synthesis and their superior electrocatalytic activity and ethanol tolerant ability in alkaline media. Langmuir.2013, 29, 4413-4420.

4. Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral Palladium nanocrystals. Applied Catalysis B: Environmental.2013, 138–139, 167-174.

5. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Applied Catalysis B: Environmental.2013, 138–139, 229-235.

6. Efficient anchorage of highly dispersed and ultrafine Palladium nanoparticles on the 液态水soluble phosphonate functionalized multiwall carbon nanotubes. Applied Catalysis B: Environmental. 2013, 129, 394-402.

7. One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. Nanoscale. 2013, 5, 8007-8014.

8.Self-Assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt(ii) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite. ACS Applied Materials \u0026 Interfaces. 2013, 5, 2255-2266.

参考资料


Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike.com/id.php on line 280