瑞利散射
一种光学现象,属于散射的一种情况。又称"分子散射"。前提:粒子尺度远小于入射光波长(小于波长的十分之一)。瑞利散射具有如下特点:①散射光强与波长四次方成反比。②粒子前半部和后半部的散射光通量相等,按(1+cos□□)的关系分布。③前向(□ =0)和后向(□=180□)的散射光最强,都比垂直方向(□ =90□、270□)强一倍。④前向和后向的散射光与入射光偏振状态相同;而垂直方向的散射光为全偏振,即其平行分量(振动方向与观测平面平行的分量,观测平面系由入射光和散射光组成的平面)为零,只存在垂直分量(图1 瑞利散射的光强分布)。
简介
瑞利散射(Rayleigh scattering)由英国物理学家瑞利的名字命名。它是半径比光的波长小很多的微粒对入射光的散射。瑞利散射光的强度和入射光波长λ的4次方成反比:
其中
是入射光的光强分布函数。也就是说,波长较短的蓝光比波长较长的红光更易散射。
光学现象
(1)天空的颜色
由于瑞利散射的强度与波长四次方成反比,所以太阳光谱中波长较短的蓝紫光比波长较长得红光散射更明显,而短波中又以蓝光能量最大,所以在雨过天晴或秋高气爽时(空中较粗微粒比较少,以分子散射为主),在大气分子的强烈散射作用下,蓝色光被散射至弥漫天空,天空即呈现蔚蓝色。
另外,由于大气密度随高度急剧降低,大气分子的散射效应相应减弱,天空的颜色也随高度由蔚蓝色变为青色(约 8 公里)、暗青色(约 11 公里)、暗紫色(约 13 公里)、黑紫色(约 21 公里),再往上,空气非常稀薄,大气分子的散射效应极其微弱,天空便为黑暗所湮没。可以说,瑞利散射的结果,减弱了太阳投射到地表的能量。
(2)晚霞的颜色
当日落或日出时,太阳几乎在我们视线的正前方,此时太阳光在大气中要走相对很长的路程,我们所看到的直射光中的波长较短蓝光大量都被散射了,只剩下红橙色的光,这就是为什么日落时太阳附近呈现红色,而云也因为反射太阳光而呈现红色,但天空仍然是蓝色的。
(3)海水的颜色
海水颜色即海面向上辐射的可见光所呈现的表观颜色,其与海水包含的物质成分密切相关:在清洁的大洋水中,悬浮颗粒少,粒径小,分子散射起着主要的作用,其散射服从瑞利散射定律, 呈深蓝色(峰值的波长约为 470 nm)。
原理
(1)尺度数α
散射的程度变化是粒子半径(r)与辐射波长(λ)比例的函数,连同许多其它因子,像极化、角度、以及相干性等等。因此常引用无量纲尺度数作为判别标准:
当α远小于1时,可用瑞利散射;
当时, 需用米散射;
当 时, 可用几何光学。
(2)变化规律
下图给出水滴的散射效率因子随尺度数α变化的曲线。
从图中可以看出,当α很接近0时,散射效率因子随α增长很快,这是瑞利散射的特征。对一同一类散射粒子(例如空气分子),因为半径r是固定的,则α的加大意味着波长λ的减小。
散射效率因子随着α的增长表明了较短波长的光散射比较长波长的强。
应用
一个完美控制的激光束能够准确地散射于一个微粒,产生出命定性的结果。这样的状况也会发生于雷达散射,目标大多数是宏观物体,像飞机或火箭。
许多科技领域显着地应用到散射和散射理论。例如,超声波检查、半导体芯片检验、聚合过程监视、电脑成像等等。
公式推导
大气中的离子可视为偶极子,其振荡会辐射能量。
辐射功率为:
其中单个原子的偶极为:
其中是原子的自然频率。
整体辐射强度为:
按辐射强度定义有:
其中是每单位体积内的原子数。于是有
因为,所以距离越远,波长较短的强度越低。
参考资料
Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike.com/id.php on line 280