1. 简单百科
  2. 钠皂

钠皂

钠皂是阴离子表面活性剂,水溶液具有润湿、渗透、起泡、分散和去污等特性。钠皂是香皂和洗衣皂等洗涤用品的主要原料。

简介

sodium soaps

脂肪酸钠盐的统称。

通常由油脂与氢氧化钠水溶液经皂化反应除去丙三醇后制成,也可由脂肪酸与氢氧化钠(或碳酸钠)水溶液直接中和制成。

例如:

蓖麻酸钠皂、sodium ricinoleate(soap)

松香酸钠皂、sodium abietate、sodium rosinate、sodium resinate

亚油酸钠皂、sodium linoleate

硬脂酸钠皂、Sodium stearate (soap)

月桂酸钠皂、sodium laurate(soap)

月桂酸钠皂、sodium laurate(soap)

棕榈酸钠皂、sodium palmitate

肉豆蔻酸钠皂、sodium myrastate

主要成分

氢氧化钠

氢氧化钠(NaOH),俗称烧碱、火碱、苛性钠,因另一名称caustic 软性饮料而在香港特别行政区称为哥士的,常温下是一种白色晶体,具有强腐蚀性。易溶于水,其水溶液呈强碱性,能使酚酞变红。氢氧化钠是一种极常用的碱,是化学实验室的必备药品之一。氢氧化钠在空气中易吸收水蒸气,对其必须密封保存,且要用橡胶瓶塞。它的溶液可以用作洗涤液。

化学性质

氢氧化钠于水中会完全解离成钠离子与氢氧根,可与任何质子酸进行酸碱中和反应,以氢氯酸为例:  氢氧化钠 + HCl → NaCl + H2O 另外,于许多的有机反应中,氢氧化钠也扮演着催化剂的角色,其中,最具代表性的莫过于化反应,又名皂化反应:

RCOOR' + NaOH → RCOONa + R'OH 之所以氢氧化钠于空气中容易变质,是因为空气中含有二氧化碳:  2NaOH + CO2 → Na2CO3 + H2O 倘若持续通入过量的二氧化碳,则会生成碳酸氢钠,俗称为小苏打,反应方程式如下所示:

Na2CO3 + CO2 + H2O → 2NaHCO3氢氧化钠腐蚀性极高,就连玻璃制品也无法幸免于难,两者会生成硅酸钠〈sodium silicate〉,使得玻璃仪器中的活塞黏着于仪器上,无法再次使用之。如果以玻璃容器长时间盛装热的氢氧化钠溶液,会造成玻璃容器损坏,甚至破裂的情况。

两性金属会与氢氧化钠反应生成氢气,1986年,英国有一油罐车误装载重量百分率浓度为25%的氢氧化钠水溶液,氢氧化钠便与油罐壁上的铝产生化学变化,导致油罐因内部压力过载而永久受损,反应方程式如下所示:  2Al + 2氢氧化钠 + 2H2O → 2NaAlO2 + 3H2↑ 氢氧化铝为一相当常用于除去水中杂质的胶状凝聚剂,因过渡金属的氢氧化物大都不太溶于水,故于自来水中添加明矾可促使过渡金属以氢氧化物的形式沉淀析出,再利用简单的过滤设备,即可完成自来水的初步过滤。明矾的制备也牵涉到氢氧化钠的使用:

2Al2(SO4)3 + 2NaOH + 2H2O → 2Al(OH)3 + 3H2↑

用途

广泛应用的污水处理剂、基本分析试剂、配制分析用标准碱液、少量二氧化碳和水分的吸收剂、酸的中和钠盐制造。制造其它含氢氧根的试剂;在造纸、印染、废水处理、电镀、化工钻探方面均有重要用途。

氢氧化钠还是许多有机反应的良好催化剂。其中最典型的是酯的水解反应:RCOOR' + NaOH → RCOONa + R'OH

安全措施

密闭包装,贮于阴凉干燥处。与酸类、类、易(可)燃物等分储分运。

不可与皮肤接触,若皮肤(眼睛)接触,用流动清水冲洗,涂抹硼酸溶液

若误食,用水漱口,饮牛奶或蛋清(等酸性无害食品)且需立即就医。

变质检验

1.样品中滴加过量稀盐酸若有气泡产生,则氢氧化钠变质。原理:2氢氧化钠 + 二氧化碳式气枪==== Na2CO3+ H2O  2HCl + Na2CO3==== 2NaCl + CO2↑+ H2O  (空气中含有少量的二氧化碳,而敞口放置的NaOH溶液能够与CO2反应  HCl中的氢离子能够与碳酸根反应生成气体)注:HCl会优先与NaOH反应生成NaCl和H2O。因为NaOH是强碱,而Na2CO3是水溶液显碱性。  2.样品中加氢氧化钙,若有白色沉淀生成,则氢氧化钠变质。原理:Na2CO3 + Ca(OH)2==== CaCO3↓+ 2氢氧化钠  3.样品中加氯化钡,若有白色沉淀生成,则氢氧化钠变质。原理:Na2CO3 + BaCl2==== BaCO3↓+ 2Nacl  4、部分变质,先加入NH4Cl,有刺激性气味气体生成,再加入过量稀盐酸,有气泡产生。原理:NH4Cl+NaOH====NH3↑+H2O+NaCl  2HCl + Na2CO3==== 2NaCl + CO2↑+ H2O

处理方法

废弃的氢氧化钠不能直接倒入下水道,可以利用酸性中和,如盐酸硫酸等。(化学方程式为 2氢氧化钠+H2SO4=Na2SO4+2H2O、NaOH+HCl=NaCl+H2O)

海关监管条件

商品编码(HS CODE):28151100---固体;28151200---水溶液

监管条件:

A:入境货物通关单

B:出境货物通关单

G:两用物项和技术出口许可证(定向)

环境影响

一、健康危害

侵入途径:吸入、食入。

健康危害:该品有强烈刺激和腐蚀性。粉尘或烟雾病会刺激眼和呼吸道,腐蚀鼻中隔,皮肤和眼与氢氧化钠直接接触会引起灼伤,误服可造成消化道灼伤,粘膜糜烂、出血和休克。

二、环境危害

危险特性:该品不会燃烧,遇水和水蒸气大量放热,形成腐蚀性溶液。与酸发生中和反应并放热。具有强腐蚀性。

燃烧(分解)产物:可能产生有害的毒性烟雾。

应急处理处置方法

一、泄漏应急处理

隔离泄漏污染区,周围设警告标志,建议应急处理人员戴好防毒面具,穿化学防护服。不要直接接触泄漏物,用清洁的铲子收集于干燥洁净有盖的容器中,以少量氢氧化钠加入大量水中,调节至中性,再放入废水系统。也可以用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,收集回收或无害处理后废弃。

二、防护措施

呼吸系统防护:必要时佩带防毒口罩。

眼睛防护:戴化学安全防护眼镜。

防护服:穿工作服(防腐材料制作)。

手防护:戴橡皮手套。

其它:工作后,淋浴更衣。注意个人清洁卫生。

三、急救措施

皮肤接触:应立即用大量水冲洗,再涂上3%-5%的硼酸溶液

眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。或用3%硼酸溶液冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。必要时进行人工呼吸。就医。

食入:应尽快用蛋白质之类的东西清洗干净口中毒物,如牛奶、酸奶等奶质物品。患者清醒时立即漱口,口服稀释的醋或柠檬汁,就医。

灭火方法:雾状水、砂土、二氧化碳灭火器。

脂肪酸

脂肪酸是由碳、氢、氧三种元素组成的一类化合物,是血清甘油三酯磷脂和糖脂的主要成分。脂肪酸根据碳链长度的不同又可将其分为短链脂肪酸(short chain fatty acids,SCFA),其碳链上的碳原子数小于6,也称作挥发性脂肪酸(volatile fatty acids,VFA);中链脂肪酸(Midchain fatty acids,MCFA),指碳链上碳原子数为6-12的脂肪酸,主要成分是辛酸(C8)和癸酸(C10);长链脂肪酸(Longchain fatty acids,

脂肪酸代谢

LCFA),其碳链上碳原子数大于12。一般食物所含的脂肪酸大多是长链脂肪酸。脂肪酸根据碳氢链饱和与不饱和的不同可分为三类,即:饱和脂肪酸(saturated fatty acids,SFA),碳氢上没有不饱和键;单不饱和脂肪酸(Monounsaturated fatty acids,MUFA),其碳氢链有一个不饱和键;多不饱和脂肪(Polyunsaturated fatty acids,PUFA),其碳氢链有二个或二个以上不饱和键。富含单不饱和脂肪酸和多不饱和脂肪酸组成的脂肪在室温下呈液态,大多为植物油,如花生油、玉米油、豆油、坚果油(即阿甘油)、菜籽油等。以饱和脂肪酸为主组成的脂肪在室温下呈固态,多为动物脂肪,如牛油、羊油、猪油等。但也有例外,如深海鱼油虽然是动物脂肪,但它富含多不饱和脂肪酸,如20正戊烷烯酸(EPA)和22碳6烯酸(DHA),因而在室温下呈液态。

形成过程

自然界约有40多种不同的脂肪酸,它们是脂类的关键成分。许多脂类的物理特性取决于脂肪酸的饱和程度和碳链的长度,其中能为人体吸收、利用的只有偶数碳原子的脂肪酸。脂肪酸可按其结构不同进行分类,也可从营养学角度,按其对人体营养价值进行分类。按碳链长度不同分类。它可被分成短链(含4~6个碳原子)脂肪酸;中链(含8~14个碳原子)脂肪酸;长链(含16~18个碳原子)脂肪酸和超长链(含20个或更多碳原子)脂肪酸四类。人体内主要含有长链脂肪酸组成的脂类。

功能

脂肪酸(fatty acid)具有长烃链的羧酸。通常以酯的形式为各种脂质的组分,以游离形式存在的脂肪酸在自然界很罕见,最普通的脂肪酸见下表。大多数脂肪酸含偶数碳原子,因为它们通常从2碳单位生物合成。高等动、植物最丰富的脂肪酸含16或18个碳原子,如软脂酸(软脂酸)、油酸亚油酸硬脂酸。动植物脂质的脂肪酸中超过半数为含双键的不饱和脂肪酸,并且常是多双键不饱和脂肪酸。细菌脂肪酸很少有双键但常被羟化,或含有支链,或含有环丙烷的环状结构。某些植物油和蜡含有不常见的脂肪酸。不饱和脂肪酸必有1个双键在C⑼和C⑽之间(从羧基碳原子数起)。脂肪酸的双键几乎总是顺式几何构型,这使不饱和脂肪酸的烃链有约30°的弯曲,干扰它们堆积时有效地填满空间,结果降低了范德华相互反应力,使脂肪酸的熔点随其不饱和度增加而降低。脂质的流动性随其脂肪酸成分的不饱和度相应增加,这个现象对膜的性质有重要影响。饱和脂肪酸是非常柔韧的分子,理论上围绕每个C—C键都能相对自由地旋转,因而有的构像范围很广。但是,其充分伸展的构象具有的能量最小,也最稳定;因为这种构象在毗邻的CH2间的位阻最小。和大多数物质一样,饱和脂肪酸的熔点随分子重量的增加而增加。

动物能合成所需的饱和脂肪酸亚油酸这类只含1个双键的不饱和脂肪酸,含有2个或2个以上双键的多双键脂肪酸则必须从植物中获取,故后者称为必需脂肪酸,其中亚麻酸和亚油酸最重要。花生四烯酸从亚油酸生成。花生四烯酸是大多数前列腺素的前体,前列腺素是能调节细胞功能的激素样物质。

脂肪酸可用于丁苯橡胶生产中的乳化剂和其它表面活性剂、润滑剂、光泽剂;还可用于生产高级香皂、透明皂、硬脂酸及各种表面活性剂的中间体。

用途

主要用于制造日用化妆品、洗涤剂、工业脂肪酸盐、涂料、油漆、橡胶、肥皂等。

参考资料


Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike.com/id.php on line 280