制动器
制动器就是刹车设备,是使机械中的运动件停止或减速的机械零件。
简介
制动器(brake staff)可以分两大类,工业制动器和汽车制动器。汽车制动器又分为行车制动器(脚刹),驻车制动器(手刹)和平衡增力制动器。在行车过程中,一般都采用新型的平衡增力制动器,因为平衡增力制动器在行驶过程中配合螺旋凹槽刹车鼓会使汽车在整个行驶过程中保持平衡状态,并且刹车的稳定性也是国内汽车制动器最好的一种,对重载汽车的驾驶员有着很好的保驾护航的作用。
发展
工业制动器行业的下游行业主要为起重运输机械、冶金设备、矿山设备、建筑工程机械、风电及核电设备、船舶及海上重工等装备制造业,受益于这些产业的振兴与发展,工业制动器行业将迎来又一轮持续、健康的发展机遇。根据《2013-2017年中国工业制动器行业发展前景预测与转型升级分析报告》的预计,我国工业制动器行业在未来几年内仍将保持10%-20%的年增长率。
根据我国“十二五”发展规范纲要中关于推动重点领域跨越发展的相关部署,高端装备制造、新能源、新材料等战略性新兴产业依然将是我国大力发展的重点领域。国家对装备制造业的规范,将有利推动我国制动器行业的发展。另外,由于2011年经济继续保持稳定增长,前瞻网预计2011年我国的GDP将为9.5%,汽车产销情况有望继续获得较大增幅;2011年全国汽车市场总需求有望达到2000万辆。综合判断,2011年中国汽车销量增速为10%-15%,这将带动制动器行业需求市场的发展。据预计,我国制动器行业市场规模在未来5年内,仍将保持15%-25%的年增长率。
随着装备制造业的振兴和发展,国产制动器的产量也有明显增加,制动器行业的销售收入同步增长;由于受制于起步晚、技术基础薄弱以及资本投资有限,我国制动器产品以低端产品为主,业内少数领先企业坚持自主创新,加大研发投入,正在向科技含量较高的中、高端产品方向发展,制动器中、高端产品的市场份额逐渐增加,中、高端制动器企业的利润率呈上升趋势;而低端产品生产企业则因厂商众多,竞争激烈,价格呈下降趋势,同时钢材等主要原材料价格有所波动,其利润增长速度趋缓。
型式
制动器因现代工业机械的发展而出现多种新的结构型式,其中钳盘式制动器、磁粉制动器以及电磁制动器的应用最为广泛。具体分类如下:
1、摩擦式制动器,它可分为盘式制动器、外抱块式制动器、内胀蹄式制动器、带式制动器、综合带式制动器、双蹄式制动器、多蹄式制动器、简单带式制动器、单盘式制动器、多盘式制动器、固定钳式制动器、浮动式制动器等。
2、非摩擦式制动器,它可分为磁粉制动器、磁涡流制动器、水涡流制动器等。
种类
平衡增力制动器
预防追求平衡制动,就是追求车辆刹车时车轮的制动力均衡一致。两侧前轮一致;能预防方向跑偏,两侧后轮一致;能预防车身侧滑甩尾。汽车在冰雪路面、雨湿路面上刹车,跑偏和甩尾都会造成车辆不同程度地失控,如果遇两种情况同时发生,正常路面刹车也会造成车辆的完全失控。重型运输车辆一旦失控,产生的后果更为严重。因此;为避免重大交通事故发生,保证人民生命财产安全,重型运输车辆必须坚决淘汰一切“非平衡性质”的汽车制动器。刹车跑偏甩尾。
刹车力强
总制动力=原制动力+自增力,在平衡增力制动器工作时,要新生出一种由摩擦力转换机械力而形成的自增刹车力,两种制动力组合后,总制动力可增大40%左右,所以:中国第一“刹”应对重载、陡坡、及各种危险路面安全性能更高。
根本解决刹车鼓破裂问题
制动鼓破裂会使车轮制动失效,涉及行车安全。凡是安装平衡增力制动器的车辆都非常惊叹:一个长期困扰的制动鼓破裂问题终于圆满解决。平衡制动;能使鼓面受力均匀,单位面积的压应力减轻,热裂纹减少,制动鼓体的机械强度不易破坏,破裂问题就迎刃而解。今后制动鼓以自然磨损报废为主。使用期限超过原车制动器的三倍以上。
摩擦片不能浪费
原车制动器的刹车片;最大接触面不超过80%,而且两蹄的磨损程度也不一致,以最薄的一端到位后就全部更换。看着厚重的报废片十分可惜。平衡制动器的接触面自始至终是100%,而且磨损程度均匀,报废片的厚度相等。按磨损体积或重量计算,要多磨掉三分之一。所以;中国第一“刹”更节省刹车片。
维护车桥承载质量
制动器是安装在桥壳上,制动鼓是安装在轮芯上,轮芯通过轴承安装在半轴导管上,这就是汽车车桥。平衡制动车桥消除了行驶机构的运转应力偏载和应力集中,最大限度地维护了车桥的承载质量省钱、省时、性价比高
运载车辆的制动系统升级之后,性能会发生巨大的改变,仅在制动鼓和摩擦片方面,就超过了它3倍以上的价值。在长期使用过程中,能够节省大量的材料费和维修费以及大量的精力和时间。而改装一副平衡器增加的投入,不足购买半只刹车鼓的价格,充分体现出具有很高的性价比,减少故障发生。使车桥上的轮芯、轴承、半轴导管的使用寿命成倍延。
行车制动器
行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前行和后行。停车后一般除使用驻车制动器外,上行坡位停车要将档位挂在一档(防止后行),下行坡位停车要将档位挂在倒档(防止前行)。
工业制动器中起重机用制动器对于起重机来说既是工作装置,又是安全装置,制动器在起升机构中,是将提升或下降的货物能平稳的停止在需要的高度,或者控制提升或下降的速度,在运行或变幅等机构中,制动器能够让机构平稳的停止在需要的位置。
液压制动平稳、安全可靠、维修方便、耗电低、寿命长、无噪音、频率高等优点。
公司产品在国内起重运输、港口机械、冶金机械、铁路机械、水工机械、矿山机械等行业中被广泛应用
电梯制动器
制动器是动作频繁的电梯安全部件之一,它能使电梯的电动机在没有电源供应的情况下停止转动,并使轿厢有效地制停,电梯能否安全运行与制动器的工作状况密切相关。大量事故案例表明,电梯人身伤亡事故发生的主要原因之一就是制动器发生故障或者自身存在设计缺陷,从而导致电梯出现冲顶、底、溜车,甚至发生剪切等现象。因此,加强电梯制动器的安全检验尤为重要。
1、制动器机械部分常见的问题、安全要求及检验
1.1 制动器机械部分常见的问题
电梯制动器机械部分常见的问题如下。
(1)冲程指示器与可动指示器相碰,一些厂家的设计者对冲程指示器安装的唯一性考虑欠周到。
(2)长期使用造成制动闸瓦脱落,粘接开胶(有些制动器是粘接不是铆接)。
(3)密封橡胶老化破裂,掉进异物造成制动器卡阻。
(4)电磁铁芯生锈,造成制动器卡阻。
(5)电梯铁芯导向机构设计不合理,铜棒与铁芯连接处发生多处断裂,造成制动器卡阻。
(6)电梯维修保养人员对制动器检查、维护保养方法不当。
1.2 制动器机械部分的安全要求及检验
为了解决上述问题,国家相关法规和标准提出了相应的安全要求和检验标准,具体内容如下。
(1)无论何种原因导致电梯动力电源或控制电路电源失电时,制动器都应产生足够的制动力矩使轿厢可靠制停。因此制动力矩是其主要参数,用于保证运行中的电梯按标准要求的减速度制停。
TSG T7001-2009《电梯监督检验和定期检验规则-曳引与强制驱动电梯》附件A第8.10项要求:“轿厢空载以正常运行速度上行,切断电动机与制动器供电,轿厢应当被可靠制停,并且无明显变形和损坏。 ”
检验时将轿厢空载以正常运行速度上行至行程上部时,断开主电源开关,检查轿厢制停和变形损坏情况。
检验时轿厢承载125%额定载荷以正常运行速度下行,当轿厢运行到较低层站时,切断电动机与制动器供电,轿厢应被可靠制停且无明显变形和损坏。通常用加减速度测试仪现场测试并记录数值,仪器可以显示出平均减速度。
(2)GB7588-2003第12.4.2.1条要求:“所有参与向制动轮或盘施加制动力的制动器机械部分应分两组装设。如果一组部件不起作用,应有足够的制动力使载有额定载荷以额定速度下行的轿厢减速下行。电磁线圈的铁芯被视为机械部件,而线圈则不是。”此项标准可以理解为“所有参与向制动轮或制动盘施加制动力的制动器的部件应是制动瓦及产生制动力的压缩弹簧或重锤,按上述规定应分为两组。同时,与压缩弹簧向制动轮施加制动力作用相反的、起开闸作用的电磁铁的铁心也必须对应地分为两组,并且两组铁心间不能存在关联,其动作应是独立的。该规定并未强调两个线圈,如设两个线圈就是两套制动器了。”因此在外观检验时,上述所说的硬件应符合要求。功能试验时,认为使一组制动瓦打开,让载有额定载荷以额定速度下行的轿厢拉闸断电,互相判定另一组制动瓦是否让轿厢减速下行。
由于本项要求是GB7588-2003版提出来的,而按照GB7588-1995要求制造的电梯,其制动器电磁铁的铁心一般只有一个,所以只能作为一组制动器而非两组,故不符合本项条件的要求。因此在实际检验时,一般依照出场日期按“新梯新标准,老梯老标准”的办法执行。
(3)GB7588-2003第12.4.2.4条要求:“装有手动紧急操作装置的电梯驱动主机,应能用手松开制动器并需要以一持续力保持松开状态。”检验时断开电梯总电源,将盘车轮装上,1-2名维保人员把住盘车轮,另一名维保人员用松闸扳手将抱闸松开,进行救援盘车放人试验。当然由于各个厂家曳引机型式不一,操作方式稍有不同。如果是操作力大于400N的操作装置或者难于手动盘车的无机房电梯,应设置紧急电动运行的电气操作装置。
(4)对于块式制动器,GB10060-1993《电梯安装验收规范》第4.1.10条要求:“制动器动作灵活,制动时两侧闸瓦应紧密、均匀地贴合在制动轮的工作面上,松闸时应同步离开,其四角处间隙平均值两侧各不大于0.7mm。”。”因此在检验时一定要检查制动器转动部 件,各销轴应转动灵活;通电或断电时动铁心应运行 无卡阻;制动器两侧制动臂应动作一致,即同时开闸 或抱闸。在检验制动器四角处间隙平均值两侧各不大 于0.7mm时,短接上限位开关、上极限开关和缓冲器开 关,慢车提升空轿厢,使对重完全压实在缓冲器上。切断电梯总电源,人为使制动器控制线圈得电,将制动器 打开,用塞尺测量制动瓦与制动轮之间的间隙,其四角 处间隙平均值应不大于0.7mm。在此应注意,标准要求 的是间隙的平均值。
(5)应经常检查制动器阐瓦(或刹车片)的磨损量。如 果磨损量较大,会使闸瓦(或刹车片)与制动轮(盘)接触 面减少,导致制动力矩减小,从而产生溜车等不安全隐患。图1为磨损严重的闸瓦。在结构上,制动瓦作用于 制动轮或制动盘上的力应是对称的,其对电动机轴和蜗杆轴不产生附加载荷。制动闸瓦材料应是不易燃的,且有一定的热容量,以保证发热时摩擦系数基本不变。其 必须由足够强度和良好质量的材料制成,不准使用有害 材料,如石棉等。
(6)制动器噪声应单独检测
2制动器电气部分的安全要求及检验
2.1制动器电气部分的安全要求
由于制动器采用的是机-电式,因此对制动器电气部分的检验也是非常重要的。
(1)在工作电压下,按曳引机运行机制、负载持续 率和周期运行,当制动器达到热稳定状态时,测量制动 线圈的温升。测量方法采用GB 755-2008《旋转电机定 额和性能》第8.6.2条电阻法测量和计算。采用B级绝缘 时,制动器线圈温升不应超过80K;采用F级绝缘时,制动器线圈温升不应超过105K。对于裸露表面温度超过 6(TC的制动器,应增加防止烫伤的警示标志。
(2)制动器线圈耐压试验应满足导电部分对地间施以 1000V电压,历时lmin,不应出现击穿现象。
(3)应在制动器温升试验结束后测量制动器电磁铁的 最低吸合电压和最高释放电压。GB/T 24478-2009《电梯曳引机》规定:制动器电磁铁的最低吸合电压和最高 释放电压应分别低于额定电压的80%和55%。
(4)较新的制动器都装有抱闸监控开关,当制 动器运行异常时,该开关就会动作,电梯保护停梯,这 对制动器的安全可靠运行提供了保障。但没有相关 标准要求,希望以后在标准中有所体现,以便维护和检验。
(5)制动器电气部分的另一要点是制动器线圈的控 制电路。根据相关标准的规定将其归纳总结如下:①正 常运行时,制动器应在持续通电下保持松开状态。②切 断制动器电流,至少应用两个独立的电气装置来实现,不论这些装置与用来切断电梯驱动主机电流的电气装置 是否为一体。③所谓独立是指两个接触器无相互控制关 系,两个接触器必须分别由两个独立的信号控制,不能 由一个信号控制。④当电梯停止时,如果其中一个接触 器的主触点未打开,最迟到下一次运行方向改变时应防 止电梯再运行。⑤当电梯电动机有可能起发电机的发 电作用时,应防止该电动机向操纵制动器的电气装置馈 电。⑥断开制动器的释放电路后,电梯应无附加延迟地 被有效制动。制动器制动响应时间不应大于0.5s,防止 电梯有倒拉、溜车现象。对于兼作轿厢上行超速保护装 置制动元件的工作制动器,其响应时间应符合GB 7588- 2003第9.10.1条的制动要求。⑦如果回路中有一个触点 粘连,另一个接触器触点仍能将制动器回路可靠断开,防止出现溜梯。⑧能够监控接触器未打开这一故障,以 防止另一个接触器也未打开而造成溜梯。
2.2检查制动器线圈控制电路时应注意的问题
通过对标准的学习,以及在实践中的经验总结,笔 者认为在检查制动器线圈控制电路时,应注意以下几方 面的问题。
(1)认真查阅电气原理图和接线图,仔细分析控制回 路中电气装置的数量及其相互独立性。例如在图2中,可以发现XC、SC与YXC不独立,有相互控制关系。
(2)检查制动器的控制电路,确认是否由两个以上的电气装置来实现切断制动器电流。
(3)切断制动器电流的电气装置之间独立性的分析。在确定了切断制动器电流的电气装置的数量不少于两个之后,应进一步分析电气装置之间的独立性。
(4)在完成电气原理图的审核后,可以进行现场检 验。一般可按下列步骤进行。
①先要核对设备与图纸是否一致,确认设备与图纸 一致后要完成图纸审核中遗留问题的检验,如电气装置 的个数、型式。
②电梯通电,轿厢置于中间层站,关闭电梯门。
③当电梯运行时,机房维修人员用工具按住已经吸 合的用来切断制动器电流的一个接触器不放。
④电梯平层停车。此时,被测接触器在人为外力作 用下,主触点还应处于闭合状态,可以模拟触电粘连状态。轿内检修人员再选原出发楼层,电梯应不能运行。
⑤在进行上述试验时,均应派人守在主电源旁边,万一发生意外应立即断电停梯。
在进行上述试验时,当电梯运行方向改变时,电梯 不能运行,可以判定制动器电气控制系统符合标准的要求,确认试验结论为合格。
制动器的新作用
对电梯来说,制动器既是工作装置,也是安全装置。随着技术的发展和节能环保要求的提升,越来越多的永磁同步无齿轮曳引机将取代传统的蜗轮蜗杆式曳引机,因而可能不用再单独装设上行超速保护装置,此种永磁同步无齿轮曳引机的制动器(应进行型式试验)具有上行超速保护功能。根据GB 7588-2003第9.10条的要求,轿厢上行超速保护装置通常由速度监控元件和减速执行元件两部分组成,而永磁同步无齿轮曳引机的制动器(所有参与向制动轮或盘施加力的制动器部件分两组装 设被认为这些部件存在内部的冗余度)正是作为减速执 行元件使电梯减速或停止的。因此,在检验中要检査制 动器应该有具有上行超速保护功能的型式试验合格证和 报告,制动器与曳引轮之间是否为直接刚性连接I应有 电气装置来验证制动器工作是否正常,但不用串入安全 回路。对其上行超速保护的制动性能也应符合GB 7588- 2003第9.10条的相关要求。
TSG T700丨-2009要求电梯制造单位应提供驱动主机 的型式试验合格证笔者査阅了一些驱动主机的型式试 验合格证和报告,都包括制动器的内容,与以前相比这 一条无论是在机械部分还是电气部分都多了一道安全把关。
分类
摩擦
①摩擦式制动器。靠制动件与运动件之间的摩擦力制动。
②非摩擦式制动器。制动器的结构形式主要有磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(通过调节励磁电流来调节制动力矩的大小)以及水涡流制动器等。
制动件结构形式
又可分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器等;
制动件工作状态
还可分为常闭式制动器(常处于紧闸状态,需施加外力方可解除制动)和常开式制动器(常处于松闸状态,需施加外力方可制动);
操纵方式
也可分为人力、液压、气压和电磁力操纵的制动器。
制动系统的作用
制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
制动操纵能源
制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
制动能量传输方式
制动系统可分为机械式、液压式、气压式、电磁式等多种。同时采用两种以上传能方式的制动系称为组合式制动系统。
工作原理
制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。
可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。
当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。
在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。
车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的捷达、重庆铃耀汽车有限公司奥拓及铃木羚羊、比亚迪福莱尔、悦达起亚千里马、上汽通用汽车赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。
实际应用差别很明显,盘刹比鼓刹好。鼓刹与盘刹各有利弊。在刹车效果上,盘刹和鼓刹的相差并不大,因为刹车时,是靠刹车来把动能转换成热能的。如果车身小巧,车身重量轻,后轮用鼓刹就可以了。
散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会更高些,不过在下雨天道路泥泞的情况下当刹鼓粘了泥沙后刹车效果就会大打折扣,这也是盘刹的缺点;费用方面,鼓刹较盘刹更低,而且使用寿命更长,因此一些中低档车多会采用鼓刹,中高档以上的车型基本采取四轮盘刹。
汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮负荷要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。四轮盘式制动的lux,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在轿车领域中,盘式制动有逐渐取代鼓式制动的趋向。
一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。汽车所用的摩擦制动器可分为鼓式和盘式两大类。
旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。
块式
起重机用制动器由制动瓦块、制动臂、制动轮和松闸器组成。常把制动轮作为联轴器的一个半体安装在机构的转动轴上,对称布置的制动臂与机架固定部分连,内侧附有摩擦材料的两个制动瓦块分别活动铰接在两制动臂上,在松闸器上闸力的作用下,成对的制动瓦块在径向抱紧制动轮而产生制动力矩。
在接通电源时,电磁松闸器的铁心吸引衔铁压向推杆,推杆推动左制动臂向左摆,主弹簧被压缩。同时,解除压力的辅助弹簧将右制动臂向右推,两制动臂带动制动瓦块与制动轮分离,机构可以运动。当切断电源时,铁心失去磁性,对衔铁的吸引力消除,因而解除衔铁对推杆的压力,在主弹簧张力的作用下,两制动臂一起向内收摆,带动制动瓦块抱紧制动轮产生制动力矩;同时,辅助弹簧被压缩。制动力矩由主弹簧力决定,辅助弹簧保证松间间隙。块式制动器的制动性能在很大程度上是由松闸器的性能决定的。
制动系
功用
使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已停驶的汽车保持不动,这些作用统称为制动;汽车上装设的一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的制动,这种可控制的对汽车进行制动的外力称为制动力;这样的一系列专门装置即称为制动系。
这种用以使行驶中的汽车减速甚至停车的制动系称为行车制动系;用以使已停驶的汽车驻留原地不动的装置,称为驻车制动系。这两个制动系是每辆汽车必须具备的。
组成部分
任何制动系都具有以下四个基本组成部分:
1)供能装置,包括供给、调节制动所需能量以及改善传能介质状态的各种部件。
2)控制装置,包括产生制动动作和控制制动效果的各种部件。
3)传动装置,包括将制动能量传输到制动器的各个部件
4)制动器,产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中包括辅助制动系中的缓速装置。
制动分类
按制动能源来分类,行车制动系可分为,以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系,其制动源可以是发动机驱动的空气压缩机或油泵;兼用人力和发动机动力进行制动的制动系称为伺服制动系。
驻车制动系可以是人力式或动力式。专门用于挂车的还有惯性制动系和重力制动系。
按照制动能量的传输方式,制动系可分为机械式、液压式、气压式和电磁式等。同时采用两种以上传能方式的制动系可称为组合式制动系。
鼓式
简介 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的散热要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,刹车力大,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,制动力大,因此许多重型车至今仍使用四轮鼓式的设计。
优点 自刹作用:鼓式刹车有良好的自刹作用,由于刹车来令片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度(当然不会大到让你很容易看得出来)刹车来令片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别可能有大型采气动辅助,而小型车采真空辅助来帮助刹车。成本较低:鼓式刹车制造技术层次较低,也是最先用于刹车系统,因此制造成本要比碟式刹车低。
缺点 由于鼓式刹车刹车来令片密封于刹车鼓内,造成刹车来令片磨损后的碎削无法散去,影响刹车鼓与来令片的接触面而影响刹车性能。鼓刹最大的缺点是下雨天沾了雨水后 会打滑,造成刹车失灵这才是其最可怕的 领从蹄式制动器 增势与减势作用,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)。制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。制动时两活塞施加的促动力是相等的。因此在制动过程中对制动鼓产生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。单向双领蹄式制动器 在制动鼓正向旋转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其结构示意图如右图所示。双领蹄式制动器与领从蹄式制动器在结构上主要有两点不相同,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的布置是中心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的布置是轴对称布置的。双向双领蹄式制动器 无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图5-42是其结构示意图器。与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。双从蹄式制动器 前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见图5-44。这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。虽然双从蹄式制动器的前进制动效果低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。
因此,这三种制动器都属于平衡式制动器。单向自增力式制动器 单向自增力式制动器的结构原理见右图。第一制动蹄1和第二制动蹄2的下端分别浮支在浮动的顶杆6的两端。汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。第一蹄是领蹄,并且在各力作用下处于平衡状态。顶杆6是浮动的,将与力S1大小相等、方向相反的促动力FS2施于第二蹄。故第二蹄也是领蹄。作用在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,形成第二蹄促动力FS2。对制动蹄1进行受力分析可知,FS2\u003eFS1。此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。因此,第二蹄的制动力矩必然大于第一蹄的制动力矩。倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动作用。双向自增力式制动器 双向自增力式制动器的结构原理如图5-47所示。其特点是制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作用。它的结构不同于单向自增力式之处主要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。制动鼓正向(如箭头所示)旋转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向旋转时则情况相反。在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S\u003eFS。考虑到汽车前进制动的机会远多于倒车制动,且前进制动时制动器工作负荷也远大于倒车制动,故后蹄3的摩擦片面积做得较大。凸轮式制动器,所有国产汽车及部分外国汽车的气压制动系统中,都采用凸轮促动的车轮制动器,而且大多设计成领从蹄式。制动时,制动调整臂在制动气室6的推杆作用下,带动凸轮轴转动,使得两制动蹄压靠到制动鼓上而制动。由于凸轮轮廓的中心对称性及两蹄结构和安装的轴对称性,凸轮转动所引起的两蹄上相应点的位移必然相等。这种由轴线固定的凸轮促动的领从蹄式制动器是一种等位移式制动器,制动鼓对制动蹄的摩擦使得领蹄端部力图离开制动凸轮,从蹄端部更加靠紧凸轮。因此,尽管领蹄有助势作用,从蹄有减势作用,但对等位移式制动器而言,正是这一差别使得制动效能高的领蹄的促动力小于制动效能低的从蹄的促动力,从而使得两蹄的制动力矩相等。楔式制动器 楔式制动器中两蹄的布置可以是领从蹄式。作为制动蹄促动件的制动楔本身的促动装置可以是机械式、液压式或气压式。两制动蹄端部的圆弧面分别浮支在柱塞3和柱塞6的外端面直槽底面上。
柱塞3和6的内端面都是斜面,与支于隔架5两边槽内的滚轮4接触。制动时,轮缸活塞15在液压作用下推使制动楔13向内移动。后者又使二滚轮一面沿柱塞斜面向内滚动,一面推使二柱塞3和6在制动底板7的孔中外移一定距离,从而使制动蹄压靠到制动鼓上。轮缸液压一旦撤除,这一系列零件即在制动蹄回位弹簧的作用下各自回位。导向销1和10用以防止两柱塞转动。鼓式制动器小结 以上介绍的各种鼓式制动器各有利弊。就制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况(如是否沾水、沾油,是否有烧结现象等)的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿车为保证制动可靠性而采用(例如英国女王牌轿车)。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故仍相当广泛地用于各种汽车。
盘式
盘式制动器简介
盘式制动器有液压型的,由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。
盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。
盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。钳盘式制动器过去只用作中央制动器,但则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。
特点
盘式制动器与鼓式制动器相比,有以下优点:一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定;浸水后效能降低较少,而且只须经一两次制动即可恢复正常;在输出制动力矩相同的情况下,尺寸和质量一般较小;制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大;较容易实现间隙自动调整,其他保养修理作业也较简便。对于钳盘式制动器而言,因为制动盘外露,还有散热良好的优点。盘式制动器不足之处是效能较低,故用于液压制动系统时所需制动促动管路压力较高,一般要用伺服装置。
盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。在货车上,盘式制动器也有采用,但离普及还有相当距离。
优点
由于刹车系统没有密封,因此刹车磨损的细削不到于沈积在刹车上,碟式刹车的离心力可以将一切水、灰尘等污染向外抛出,以维持一定的清洁。此外由于碟式刹车零件独立在外,要比鼓式刹车更易于维修。
缺点
碟式刹车除了成本较高,基本上皆优于鼓式刹车,不过光就这一点,便成了它致命伤,人都爱钱嘛,除非你非常富有,否则买东西基本上都是先以钱先做考量,您说是或不是?盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,加速通风散热提高制动效率。反观鼓式制动器,由于散热性能差,在制动过程中会聚集大量的热量。制动蹄片和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用,所以只能适用于轻型车上。而鼓式制动器成本相对低廉,比较经济。
定钳盘式
定钳盘式制动器。跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。
这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。
浮钳盘式
浮钳盘式制动器,制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,只须在行车制动钳油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。故自70年代以来,浮钳盘式制动器逐渐取代了定钳盘式制动器。
制动机构
按在汽车上安装位置的不同,驻车制动装置分中央驻车制动装置和车轮驻车制动装置两类。前者的制动器安装在传动轴上,称为中央制动器;后者和行车制动装置共用一套制动器,结构简单紧凑,已在轿车上得到普遍应用。
这种制动器将一个作行车制动器的盘式制动器和一个作驻车制动器的鼓式制动器组合在一起。双作用制动盘的外缘盘作盘式制动器的制动盘,中间的鼓部作鼓式制动器的制动鼓。
进行驻车制动时,将驾驶室中的手动驻车制动操纵杆拉到制动位置,经一些列杠杆和拉绳传动,将驻车制动杠杆的下端向前拉,使之绕平头销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。待前制动蹄压靠到制动鼓上之后,推杆停止移动,此时制动杠杆绕中间支点继续转动。于是制动杠杆的上端向右移动,使后制动蹄压靠到制动鼓上,施以驻车制动。
解除制动时,将驻车制动操纵杆推回到不制动的位置,制动杠杆在卷绕在拉绳回位弹簧的作用下回位,同时制动蹄回位弹簧将两制动蹄拉拢。
自调装置
制动蹄在不工作的原始位置时,其摩擦片与制动鼓间应有合适的间隙,其设定值由汽车制造厂规定,一般在0.25~0.5mm之间。任何制动器摩擦副中的这一间隙(以下简称制动器间隙)如果过小,就不易保证彻底解除制动,造成摩擦副拖磨;过大又将使制动踏板行程太长,以致驾驶员操作不便,也会推迟制动器开始起作用的时刻。但在制动器工作过程中,摩擦片的不断磨损将导致制动器间隙逐渐增大。情况严重时,即使将制动踏板踩到下极限位置,也产生不了足够的制动力矩。大多数轿车都装有制动器间隙自调装置,也有一些卡车仍采用手工调节。
制动器间隙调整是汽车保养和修理中的重要项目,按工作过程不同,可分为一次调准式和阶跃式两种。
右图是一种设在制动轮缸内的摩擦限位式间隙自调装置。用以限定不制动时制动蹄的内极限位置的限位摩擦环2,装在轮缸活塞3内端的环槽中,活塞上的环槽或螺旋槽的宽度大于限位摩擦环厚度。活塞相对于摩擦环的最大轴向位移量即为二者之间的间隙。间隙应等于在制动器间隙为设定的标准值时施行完全制动所需的轮缸活塞行程。
制动时,轮缸活塞外移,若制动器间隙由于各种原因增大到超过设定值,则活塞外移到0时,仍不能实现完全制动,但只要轮缸将活塞连同摩擦环继续推出,直到实现完全制动。这样,在解除制动时,制动蹄只能回复到活塞与处于新位置的限位摩擦环接触为止,即制动器间隙为设定值。
传动装置
一般,驻车制动系统的机械传动装置组成如右图所示。驻车制动系统与行车制动系统共用后轮制动器7。施行驻车制动时,驾驶员将驻车制动操纵杆1向上扳起,通过平衡杠杆2将驻车制动操纵缆绳3拉紧,促动两后轮制动器。由于棘爪的单向作用,棘爪与棘爪齿板啮合后,操纵杆不能反转,驻车制动杆系能可靠地被锁定在制动位置。欲解除制动,须先将操纵杆扳起少许,再压下操纵杆端头的压杆按钮8,通过棘爪压杆使棘爪离开棘爪齿板。然后将操纵杆向下推到解除制动位置。使棘爪得以将整个驻车机械制动杆系锁止在解除制动位置。驻车制动系统必须可靠地保证汽车在原地停驻,这一点只有用机械锁止方法才能实现,因此驻车制动系统多用机械式传动装置。
液压装置
轿车的行车制动系统都采用了液压传动装置,主要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等组成,见右图。主缸与轮缸间的连接油管除用金属管(铜管)外,还采用特制的橡胶制动软管。各液压元件之间及各段油管之间还有各种管接头。制动前,液压系统中充满专门配制的制动液。
踩下制动踏板4,制动主缸5将制动液压入制动轮缸6和制动钳2,将制动块推向制动鼓和制动盘。在制动器间隙消失并开始产生制动力矩时,液压与踏板力方能继续增长直到完全制动。此过程中,由于在液压作用下,油管的弹性膨胀变形和摩擦元件的弹性压缩变形,踏板和轮缸活塞都可以继续移动一段距离。放开踏板,制动蹄和轮缸活塞在回位弹簧作用下回位,将制动液压回主缸。
助力器
轿车上广泛装用真空助力器作为制动助力器,利用发动机喉管处的真空度来帮助驾驶员操纵制动踏板。根据真空助力膜片的多少,真空助力器分为单膜片式和串联膜片式两种。
单膜片式 国产轿车都采用此种型式的真空助力器。
工作过程:
1. 真空助力器不工作时(图a),弹簧15将推杆连同柱塞18推到后极限位置(即真空阀开启),橡胶阀门9则被弹簧压紧在空气阀座上10(即空气阀关闭)。伺服气室前、后腔经通道A、控制阀腔和通道B互相连通,并与空气隔绝。在发动机开始工作、且真空单向阀被吸开后,伺服气室左右两腔内都产生一定的真空度。
2. 当制动踏板踩下时,起初气室膜片座8固定不动,来自踏板机构的操纵力推动控制阀推杆12和控制阀柱塞18相对于膜片座8前移。当柱塞与橡胶反作用盘7之间的间隙消除后,操纵力便经反作用盘7传给制动主缸推杆2(如下图)。同时,橡胶阀门9随同控制阀柱塞前移,直到与膜片座8上的真空阀座接触为止。此时,伺服气室前后腔隔绝。
3. 控制阀推杆12继续推动控制阀柱塞前移,到其上的空气阀座10离开橡胶阀门9一定距离。外界空气充入伺服气室后腔(如下图),使其真空度降低。在此过程中,膜片20与阀座也不断前移,直到阀门重新与空气阀座接触为止。因此在任何一个平衡状态下,伺服气室后腔中的稳定真空度与踏板行程成递增函数关系。
气压系统
系统简介
以发动机的动力驱动空气压缩机作为制动器制动的唯一能源,而驾驶员的体力仅作为控制能源的制动系统称之为气压制动系统。一般装载质量在8000kg以上的卡车和大客车都使用这种制动装置。
右图为一汽车气压制动系统示意图。由发动机驱动的空气压缩机(以下简称空压机)1将压缩空气经单向阀4首先输入湿储气罐6,压缩空气在湿储气罐内冷却并进行 辅助制动系统
制动系统虽然能够基本满足我们的需要,但是有些时候仍染要用一些辅助的制动系统来更好实现制动,一方面更好的增加了制动效能,另一方面也大大加大现代的主制动器的使用寿命!!
气压制动传动装置
气压制动装置是利用压缩空气作为动力源,并将压力转变为机械推力,使车轮产生制动。驾驶员可通过控制踏板的行程,便可调整气体压力的大小,来获得不同的制动力,得到不同的制动强度.
气压制动传动装置的特点是踏板行程较短,操纵轻便,制动力较大,消耗发动机的动力,结构复杂,制动不如液压式柔和,一般用于中,重型汽车上.
电磁
电磁制动器介绍
电磁体是电磁制动器的关键部位,对于电磁制动器的性能稳定性及可靠性具有很大的影响。当汽车下长坡连续使用制动器或高速行驶中采取紧急制动时,制动器工作部件的温度会急剧上升。当温度高到一定程度时,由于机械、物理、化学三方面因素的作用,使得制动器摩擦副的摩擦系数降低,制动器的制动效能下降,这种现象称为制动效能的热衰退,制动器的抗热衰退性是评价制动器性能好坏的重要指标之一。以下通过采用有限元分析方法对电磁体与摩擦环在下长坡时的各个时段温度场进行分析,并通过试验对分析模型和方法的准确性加以验证。
电磁制动器是整个制动系统中的执行部件。电磁制动器安装在挂车车轮上。其结构如图1所示。整个制器主要由电磁体、杠杆驱动机构、前后制动蹄、底板及摩擦环等部件组成。
使机械中的运动件停止或减速的机械零件。俗称刹车、闸。制动器主要由制动架、制动件和操纵装置等组成。有些制动器还装有制动件间隙的自动调整装置。为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。
有些制动器已标准化和系列化,并由专业工厂制造以供选用。
电磁工作原理
摩擦环随着制动鼓一起旋转,电磁体与驱动杠杆通过卡簧连接在一起。制动开始时,控制器发出制动信号,电磁体通电,产生电磁吸力,吸附在摩擦环上。由于电磁体被驱动杠杆约束,与摩擦环产生相对滑动,作用在电磁体上的摩擦力带动与之相连的驱动杠杆绕支点转动。杠杆的从动端就将制动器的两个摩擦蹄片张开并压向制动鼓,产生制动力矩。结束制动时,电磁体断电,吸力和摩擦力消失,在回位弹簧拉力的作用下,摩擦蹄片离开制动鼓,解除制动。
电磁制动器是现代工业中一种理想的自动化执行元件,在机械传动系统中主要起传递动力和控制运动等作用。具有结构紧凑,操作简单,响应灵敏,寿命长久,使用可靠,易于实现远距离控制等优点。
它主要与系列电机配套。广泛应用于冶金、建筑、化工、食品、机床、舞台、电梯、轮船、包装等机械中,及在断电时(防险)制动等场合。
起重标准
如标准规定:起升机构、变幅机构必须设置常闭式制动器,行走或回转机构可选用常闭式制动器。考虑使用场所,如制动器安装有足够的空间,可选用块式、带式制动器或臂式盘形制动器;空间受限值时,可选用内蹄式或钳形盘式制动器。考虑配套主机的使用环境,对渗漏油有严格要求的场合应选用电磁或气动制动器,对环境温度较高的冶金场所可选用绝缘等级较高的电力液压制动器或冶金型电磁制动器。在环境温度较低或较高,且露天场所选用电力液压制动器时,应注意更换相应牌号的液压油。在含铁屑、粉尘严重的环境中,应避免使用电磁铁制动器,防止粉尘进入电磁铁间隙影响电磁铁的吸合。对于特殊或重要的场合,应根据需要增设制动器的附加功能。在温度较低的环境中,可使用电力液压推动器的加热器。对于启动与制动过程转换有严格要求时,加装行程开关以了解制动器的开闭状态。对于维护、调整较难实施的环境,可加装制动间隙均等装置和摩擦片磨损自动补偿装置。增设手动松闸装置可在特殊情况下人工打开制动器。
注意事项
1、请在完全没有水分、油分等的状态下使用电磁制动器,如果摩擦部位沾有水分或油分等物质,会使摩擦扭力大为降低,制动的灵敏度也会变差,为了在使用上避免这些情况,请加设罩盖。
2、在尘埃很多的场所使用时,请将制动器全部放入箱中。60KGM以下的电磁制动器可以使用直立型,即使是更高的机种也可以使用。
3、用来安装制动器的长轴尺寸请使用JIS0401 H6或JS6的规格。用于安装轴的键请使用JIS B1301-1959所规定的其中一种。
4、考虑到热膨胀等因素,安装轴的推力请选择在0。2MM以下。
5、安装时请在机械上将吸引间隙调整为规定值的正负20%以内。
6、请使托架保持轻盈,不要使用制动器的轴承承受过重的压力。
7、关于组装用的螺钉,请利用弹簧金属片、接著剂等进行防止松弛的处理。
8、利用机械侧的框架维持引线的同时,还要利用端子板等进行确实的连接。
维护和保养
制动器的维护保养: (1)按制动器说明书要求,结合带载调试实际情况,调节好制动器弹簧和闸瓦工作行程,确保断电时制动可靠,通电后松开均匀。 (2)经常检查石棉制动片磨损状况,当磨损大于2mm时,应予以更换。 (3)制动轮工作表面必须平坦光滑,闸瓦与制动轮接触面应不小于80%,且应避免油、水进入,造成打滑。 (4)弹簧发生裂纹或永久变形时,应更换新件。 (5)及时加注润滑油和更换液压油。
维修注意事项
1.主油缸储液箱蓄液
注意:切勿过量加注制动液。过量加注制动液,在制动系统操作时,会导致制动液溢流到发动机排气部件上,易引起起火伤人。
主油缸储液箱与主油缸间用导管连接。储液箱位于车辆左侧,发动机罩下。主油缸储液箱含有足够的制动液,因此,在正常条件下储液箱不需要维护。主油缸中的低制动液传感器制动液液面低于标准时会发出警告。
拆卸储液箱盖前,先要进行清理,以免尘土进入储液箱。
·拆卸旋盖和膜片。
·储液箱的加注量不得超过最大加注液面。
·安装旋盖和膜片。
2.主油缸储液箱的更换
1)拆卸
·拆去液面传感器接线盒。
·除去制动储液箱的外盖。排去导套内的液体。
·用虹吸管将制动液箱内的制动液排得越空越好。
·使制动主油缸和输液管分开。
重要注意事项:注意溢出的制动液。
·用导水器抬高隔壁的封盖,打开制动液箱。
·撬开制动主油缸上输液管的封盖。
·检查储液箱是否开裂或变形。必要时,更换储液箱。
·用不含润滑油的压缩空气清理储液箱。
·用不含润滑油的压缩空气干燥储液箱。
2)安装
·用制动泵粘贴剂贴上新的封条,插入制动主油缸并安装输液管。
·用新的六角螺母来装配制动储液箱。
·安装导水器和隔壁封盖。
·连接液面传感器电接头。
3)检查
制动系统排气,检查是否有泄漏现象。
3.主油缸的更换
1)拆卸
·拆卸主油缸储液箱。
·使制动管道与主油缸断开。
·拆去主油缸固定螺母。
·拆卸主油缸。
2)安装
·安装主油缸。
·安装主油缸螺母。紧固制动助力器安装螺母至22牛顿米。
·使制动器管与主油缸相连接。紧固制动器管件螺母至16牛顿米。
·安装主油缸储液箱。
·在主油缸储液箱内注入制动液。
·排放制动系统中的空气。
4.制动踏板的更换
1)拆卸
·脱离制动踏板弹簧、离合器踏板和离合器拉线。
·从叉上拆下固定卡夹并拆去推杆销。
·从踏板轴上拆卸固定弹簧。松开踏板轴的六角螺母。
·拆卸踏板轴,将之移到左边。
·拆卸踏板和弹簧。
2)安装
·用专用润滑脂润滑踏板轴。
·更换后,制动踏板成为带有踏板衬套的总成。
·更换踏板底板橡胶。
·在安装位置上安装踏板和弹簧并在踏板支架上插入踏板轴。
·安装垫圈和六角螺母。把踏板轴紧固在踏板支架上,拧紧力矩18牛顿米。
·固定踏板轴,使推杆叉与制动踏板相连接。安装推杆销和固定卡夹。插入制动踏板弹簧。
·安装离合器踏板弹簧和离合器拉线。如有必要,加以调整。
·将离合器支架紧固在间隔上,拧紧力矩20牛顿米。
5.比例阀的更换
1)拆卸
重要注意事项:不要把比例阀在任何清洗液中清洗。
内部零部件己事先经专用润滑脂润滑。一次更换两个比例阀。使用具有同样压力梯度和开关压力(0.3/3)的比例阀(梯度=0.3,开关压力=3毫帕)。
·松开液罐外盖,把制动液加注至"最大"。
用与制动器储液罐外盖相似的外购盖来堵住制动器储液罐。
·抬高并适当支承车辆。
·清洁制动器管道和比例阀上的尘土和异物。
·用备用扳手拆开比例阀上的制动器管道配件。
·拆卸比例阀。
2)安装
·安装比例阀,将制动器管道附件紧固在比例阀上。
·用备用扳手将制动器管道附件与比例阀相连接。紧固比例阀内胎螺母至16牛顿米。
·放低车辆。
·排出制动器内的空气。
6.制动器管道的更换
所需工具:J 29803-A ISO(国际标准化组织)扩口用具
注意:
-更换制动器管时,务必使用双壁钢质制动器管。建议不要使用任何其它类型的管路,否则会导致制动系统故障。小心放置并保留更换下来的制动器管。使用车间内设的弯曲设备,避免使制动器管横截面变形。更换制动器管时,务必使用正确的紧固件和原始位置。
-制动器管不合理的放置和保留会损坏制动器管并导致制动系统故障。
-不要使用单折叠扩口工具。必须使用双折叠扩口工具,使扩口的强度足以支撑系统压力。使用单折叠扩口工具可导致系统损坏。
·获得推荐管路和钢质配件螺母。为确定容量,使用外直径装管方式。
·截断到合适的长度。为了确定正确的长度,用一根线量出旧管路的长度,要达到国际标准化组织认定的扩口,还应加上3mm(1/8英寸)。
·启动扩口时将接头安装到管路上。
·用去毛刺工具,倒角管路内、外径。
·擦除制动器管和扩口工具上的所有润滑油痕迹。
·工具杆体卡在台钳上。
·选择正确的管路尺寸,选择尺寸正确的锁圈和成形锥杆。
·将合适的成形锥杆插入工具杆体。
·把心轴固定在位置上的同时,拧压紧螺钉,直至压紧螺钉碰到成形心轴并开始移动成形心轴。
·与成形锥杆接触后,使压紧螺钉倒转一整圈。
·将夹紧螺母套在制动器管上,嵌入正确的锁圈中。
将管路从锁圈中伸出约19毫米(3/4英寸)。
·将锁圈插入工具杆体。制动器管端必须接触成形锥杆表面。
·将夹紧螺母插入工具杆,紧固,否则管路会被推出。
·紧固顶丝,直到顶丝顶到底。切勿过度紧固顶丝,否则扩口尺寸将变得过大。
·从工具体上退出夹紧螺母。
·拆卸夹紧螺母和锁圈。现在,扩口便可以使用了。
·弯曲管路,与旧管路匹配。与运转或振动部件保持19毫米(3/4英寸)的间隙。
7.制动器软管的检查
每年至少检查挠性液压制动器软管两次。液压制动器软管将壳体上的钢质制动器管中的液压传递到卡钳和制动蹄。
·检查软管是否出现如下情况:
-道路危险损坏
-断裂
-外壳磨损
-泄漏
-气孔
-布线和装配正确
进行适当的检查需要有灯光和镜子。
如果发现制动器软管有错误情况,更换制动器软管。
8.前方制动器软管的更换
1)拆卸
注意:不要让零部件悬挂在扰性软管上,这样可能会损坏软管。
·松开制动器储液罐外盖,把制动液加注至"最大"。
用一个与制动器储液罐外盖相似的外购盖子来堵住制动器储液罐。
·举升并适当支承车辆。
·拆卸前胎和前轮。
·清除制动器软管和管接头上的尘土和异物。
·在软管接头上使用支撑扳手,从制动器软管上拆下制动器管。
·拆卸软管安装支架上的夹持器夹子1,不耍弄弯制动器管或支架。
·从支架上卸下软管5。
·从卡钳2上拆卸下列零件
-制动器软管螺杆4
-软管5
-两个垫圈3
·废弃两个垫圈。
2)安装
·在卡钳2上安装下列零件
-制动器软管螺杆4
-软管5
-两个新的垫圈3(使用两个新的垫圈)
·用制动液润滑螺杆螺纹。紧固制动器软管夹钳螺杆至4O牛顿米。
·将制动器软管安装到托架上。软管上不应有任何扭结。
·用手指将制动器管紧固在制动器软管上。
·把夹持器夹子安装到支架上的软管接头上。
·将制动器管紧紧地连接在制功器软管上:
-用支撑扳手拧开软管接头
-不耍弄弯支架或管路
-紧固制动器管内胎螺母至16牛顿米
·安装前轮胎和前车轮。
·确保软管与悬架系统没有任何接触。检查极右和极左侧软管的运行情况。如果软管与悬架系统有接触,拆去软管并进行改正。
·降下车辆。
·排出制动器内的空气。
参考资料
论述汽车制动器刹车原理及发展方向.中国知网.2020-06-18