多轴加工
多轴加工(Multiaxis machining)是指在机械加工时,有可以在四个(或是更多)方向上移动的工具或是刀具。以铣削、水刀或是镭射切割的方式去除过多的材料。这种加工方式最早是出现在大型复杂的机器中,加工机有4轴、5轴或6轴,最多甚至到12轴),是用凸轮盘上的杠杆进行控制。凸轮盘可以控制刀具、固定工件的平面、也可以调整刀具相对于机器的位置。因为机器的体积及以复杂度,架设这些机器会需要大量的时间。数控机床的问世,提供了可以快速加工复杂工件的法。一般的数控机床可以在三个轴进行平移,而多轴加工可以在一个轴或是多个轴上旋转。工业上常用五轴加工机,工件可以在X轴、Y轴及Z轴上移动,而刀具主轴可以在二个额外的轴上旋转。
历史背景
多轴加工技术最初应用于大型复杂的机器中,早期的多轴加工机由凸轮盘上的杠杆控制,能够控制刀具、固定工件的平面以及调整刀具相对于机器的位置。然而,由于机器的体积和复杂程度,搭建这些机器需要耗费大量时间。随着数控机床的出现,多轴加工技术得以快速发展,数控机床能够在三个轴上进行平移,而多轴加工则能在更多的轴上旋转,包括两个额外的轴。
技术原理
多轴加工技术的核心在于能够在一个或多轴上旋转的刀具或工具。在三坐标铣削加工和普通的两坐标车削加工中,作为加工程序的NC代码的主体即是众多的坐标点,控制系统通过坐标点来控制刀尖参考点的运动,从而加工出需要的零件形状。在编程的过程中,只需要通过对零件模型进行计算,在零件上得到点位数据即可。而在多轴加工中,不仅需要计算出点位坐标数据,更需要得到坐标点上的矢量方向数据,这个矢量方向在加工中通常用来表达刀具的刀轴方向,这就对计算能力提出了挑战。目前这项工作最经济的解决方案是通过计算机和CAM软件来完成,众多的CAM软件都具有这方面的能力。但是,这些软件在使用和学习上难度比较大,编程过程中需要考虑的因素比较多,能使用CAM软件编程的技术人员成为多坐标加工的一个瓶颈因素。此外,即使利用CAM软件,从目标零件上获得了点位数据和矢量方向数据之后,并不代表这些数据可以直接用来进行实际加工。因为随着机床结构和控制系统的不同,这些数据如何能准确地解释为机床的运动,是多坐标联动加工需要着重解决的问题。以五坐标联动的铣削机床为例,从结构类型上看,分为双转台、双摆头、单摆头/单转台三大类,每大类中由于机床运动部件的运动方式的不同而有所不同。以直线轴Z轴为例,对于立式设备来说,人们编程时习惯以Z轴向上为正方向,但是有些设备是通过主轴头固定而工作台向下移动,产生的刀具相对向上移动实现的Z轴正方向移动;有些设备是工作台固定而主轴头向上移动,产生的刀具向上移动。在刀具参考坐标系和零件参考坐标系的相对关系中,不同的机床结构对三坐标加工中心没有什么影响,但是对于多轴联动的设备来说就不同了,这些相对运动关系的不同对加工程序有着不同的要求。由于机床控制系统的不同,对刀具补偿的方式和程序的格式也都有不同的要求。因此,仅仅利用CAM软件计算出点位数据和矢量方向并不能真正地满足最终的加工需要。这些点位数据和矢量方向数据就是前置文件。我们还需要利用另外的工具将这些前置文件转换成适合机床使用的加工程序,这个工具就是后处理。
分类
多轴加工分类
多轴加工中心一般分为立式加工中心和卧式加工中心。三轴立式加工中心最有效的加工面仅为工件的顶面,卧式加工中心借助回转工作台,也只能完成工件的四面加工。多轴数控加工中心具有高效率、高精度的特点,工件在一次装夹后能完成5个面的加工。如果配置5轴联动的高档数控系统,还可以对复杂的空间曲面进行高精度加工,非常适于加工汽车零部件、飞机结构件等工件的成型模具。根据回转轴形式,多轴数控加工中心可分为两种设置方式:
工作台回转轴
这种设置方式的多轴数控加工机床的优点是:主轴结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A 轴回转角度≥90°时,工件切削时会对工作台带来很大的承载力矩。
立式主轴头回转
这种设置方式的多轴数控加工机床的优点是:主轴加工非常灵活,工作台也可以设计得非常大。在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,而采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量,这是工作台回转式加工中心难以做到的。
多轴加工特点
采用多轴数控加工,具有如下几个特点:
- 减少基准转换,提高加工精度。多轴数控加工的工序集成化不仅提高了工艺的有效性,而且由于零件在整个加工过程中只需一次装夹,加工精度更容易得到保证。
- 减少工装夹具数量和占地面积。尽管多轴数控加工中心的单台设备价格较高,但由于过程链的缩短和设备数量的减少,工装夹具数量、车间占地面积和设备维护费用也随之减少。
- 缩短生产过程链,简化生产管理。多轴数控机床的完整加工大大缩短了生产过程链,而且由于只把加工任务交给一个工作岗位,不仅使生产管理和计划调度简化,而且透明度明显提高。工件越复杂,它相对传统工序分散的生产方法的优势就越明显。同时由于生产过程链的缩短,在制品数量必然减少,可以简化生产管理,从而降低了生产运作和管理的成本。
- 缩短新产品研发周期。对于航空航天、汽车等领域的企业,有的新产品零件及成型模具形状很复杂,精度要求也很高,因此具备高柔性、高精度、高集成性和完整加工能力的多轴数控加工中心可以很好地解决新产品研发过程中复杂零件加工的精度和周期问题,大大缩短研发周期和提高新产品的成功率。
五轴车铣技术
五轴车铣技术是多轴加工技术的典型,五轴车铣中心是五轴车铣技术的载体,是指一种以车削功能为主,并集成了铣削和镗削等功能,至少具有3个直线进给轴和2个圆周进给轴,且配有自动换刀系统的机床的统称。这种车铣复合加工中心是在三轴车削中心基础上发展起来的,相当于1台车削中心和1台加工中心的复合,是2O世纪90年代发展起来的复合加工技术,是一种在传统机械设计技术和精密制造技术基础上,集成了现代先进控制技术、精密测量技术和CAD/CAM 应用技术的先进机械加工技术。五轴车铣中心的先进性表现在其设计理念上。在通常的机械加工概念中,1个零件的加工,少则一两工序,多则上百工序,要经过多台设备的加工来完成,要准备刀具、工装夹具。对复杂的零件来说,有的一套工装的准备就需要三、五个月的时间,即使不考虑经济成本,三、五个月的时间很可能会错过许多商品机遇和战略机遇。在汽车、家电等批量生产行业,为了提高效率和自动化水平,广泛采用自动化生产线,庞大的物流系统构成了自动线很主要的一部分,同时是一个占钱、占地的部分,也是故障多发的部分,对复杂形面的加工,物流更是一个大问题。零件的多次装夹和基准转换,有时带来不必要的工序,同时也使零件加工精度丧失。五轴车铣复合加工中心从设计概念上解决了这个问题,它是一次装夹,完成加工范围内的全部或绝大部分工序,实现了从复合加工到完整加工的飞跃。
五轴车铣复合加工中心从产生至今,已有近20年的历史,技术已经成熟并被国内外用户接收和认可。从趋势上看,主要向以下几个方向发展:
- 更高工艺范围。通过增加特殊功能模块,实现更多工序集成。例如将齿轮加工、内外磨削加工、深孔加工、型腔加工、激光淬火、在线测量等功能集成到车铣中心上,真正做到所有复杂零件的完整加工。
- 更高效率。通过配置双动力头、双主轴、双刀架等功能,实现多刀同时加工,提高加工效率。
- 大型化。由于大型零件一般多是结构复杂、要求加工的部位和工序较多、安装定位也较费时费事的零件,而车铣复合加工的主要优点之一是减少零件在多工序和多工艺加工过程中的多次重新安装调整和夹紧时间,所以采用车铣中心进行复合加工比较有利。所以目前五轴车铣复合加工中心正向大型化发展。例如沈阳机床的HTM125系列五轴车铣中心,回转直径达到1250mm,加工长度可以达到10000mm,非常适合大型船用柴油机曲轴的车铣加工。
- 结构模块化和功能可快速重组。五轴车铣中心的功能可快速重组是其能快速响应市场需求,并能抢占市场的重要条件,而结构模块化是五轴车铣中心功能可快速重组的基础。一些技术先进的厂家(如德国DMG、奥地利的WFL、日本的MAZAK公司等)的许多产品都已实现结构模块化设计,并正在向如何实现功能快速重组的方面努力。
五轴车铣技术的先进理念是提高产品质量和缩短产品制造周期。因此,这种技术在军工、航空、航天、船舶以及一些民用工业领域中的应用具有相当的优势,尤其在航空航天领域一些形状复杂的异形零件的加工中更具优势,因此国外早已在航空航天领域大批采用此类设备代替传统的加工设备,而国内在这方面则比较落后,因此还需借鉴国外的先进经验,争取在五轴车铣技术的应用领域改变落后的局面。
难题与展望
人们早已认识到多轴数控加工技术的优越性和重要性,但到目前为止,多轴数控加工技术的应用仍然局限于少数资金雄厚的部门,并且仍然存在尚未解决的难题。多轴数控加工由于干涉和刀具在加工空间的位置控制,其数控编程、数控系统和机床结构远比3轴机床复杂得多。目前,多轴数控加工技术存在以下几个问题:
- 多轴数控编程抽象、操作困难。这是每一个传统数控编程人员都深感头疼的问题。3轴机床只有直线坐标轴,而5轴数控机床结构形式多样;同一段NC代码可以在不同的3轴数控机床上获得同样的加工效果,但某一种5轴机床的NC代码却不能适用于所有类型的5轴机床。数控编程除了直线运动之外,还要协调旋转运动的相关计算,如旋转角度行程检验、非线性误差校核、刀具旋转运动计算等,处理的信息量很大,数控编程及其抽象。多轴数控加工的操作和编程技能密切相关,如果用户为机床增添了特殊功能,则编程和操作会更复杂。只有反复实践,编程及操作人员才能掌握必备的知识和技能。经验丰富的编程与操作人员的缺乏,是多轴数控加工技术普及的大阻力。
- 刀具半径补偿困难。在5轴联动NC程序中,刀具长度补偿功能仍然有效,而刀具半径补偿却失效了。以圆柱铣刀进行接触成形铣削时,需要对不同直径的刀具编制不同的程序。目前流行的CNC系统尚无法完成刀具半径补偿,因为ISO文件中没有提供足够的数据对刀具位置进行重新计算。用户在进行数控加工时需要频繁换刀或调整刀具的确切尺寸,按照正常的处理程序,刀具轨迹应送回CAM系统重新进行计算,从而导致整个加工过程效率不高。对这个问题的最终解决方案,有赖于新一代CNC控制系统,该系统能够识别通用格式的工件模型文件(如STEP等)或CAD系统文件。
- 购置机床需要大量投资。多轴数控加工机床和3轴数控加工机床之间的价格悬殊很大。多轴数控加工除了机床本身的投资之外,还必须对CAD/CAM系统软件和后置处理器进行升级,使之适应多轴数控加工的要求,以及对校验程序进行升级,使之能够对整个机床进行仿真处理。
多轴数控加工技术正朝着高速、高精、复合、柔性和多功能方向发展,努力达到高质量、高效率的目标。我国多轴数控加工技术研究起步较晚,与发达国家的技术水平还有很大的差距。目前,多轴数控加工中心的关键部件如5轴头、数控系统、电动机,国内企业多采用进口,价格高,成本居高不下。为此,只有自力更生实现自主研发突破关键技术,坚持走技术发展的道路,才能提高企业的利润空间。
参考资料
3 轴、4 轴、5 轴加工:它们的区别.Aria.2024-09-18
多轴加工.个人图书馆.2024-09-18
基于UG NX的整体叶轮的多轴加工技术.数控机床市场网.2024-09-18