披碱草属
披碱草属(Elymusspp.)是禾本科(禾本科)小麦族(Triticeae)重要的一个属,主要分布在欧亚大陆和北美洲北部。其垂直分布从海拔几米的海滩一直到海拔5200m以上的喜马拉雅山区。披碱草属植物的多数物种为草原和草甸的重要组成成分,许多种类是饲用价值较高的优良牧草。
基本资料
属中文名:披碱草属
属拼音名:pijiancaoshu
属拉丁名:Elymus
中国植物志:09(3):6
简介
披碱草属Elymus牧草分布广泛,种类繁多,广义的披碱草属包括近150个种,而在我国,则比较接受狭义披碱草属的概念,即有12余种。披碱草属牧草为中生-旱中生多年生优良牧草,是草原和草甸的重要组成部分,饲用价值极高。该属是禾本科小麦族中非常重要的一个类群,它具有麦类作物所缺乏的抗病、抗虫、抗旱、耐盐等优良抗逆基因,是现代麦类育种的重要种质资源。
所有物种
肥披碱草
披碱草
披碱草(原变种)
披碱草属
青紫披碱草
圆柱披碱草
披碱草属(Elymus L.)植物遗传多样性研究
以我国9种披碱草属(Elymus L.)的40个居群为材料,采用形态学、等位酶和微卫星3种标记对28个形态特征、7个等位酶位点和l1对SSR引物进行遗传多样性分析。结果表明:不同居群的披碱草间形态差异显著;不同种、居群和形态特征变异规律也有所不同。旗叶与穗基部长度、生长速度(幼苗一分蘖)、小穗柄、植株绒毛分级在种内变异较大,而穗的形状、穗节数、株高和内的变化较为稳定。聚类分析结果表明:披碱草(E.dahuricus Turcz.)、圆柱披碱草(E.cylindri—CUS(Franch.)本田技研工业)、紫芒披(E.purpuraristatus C.P.Wang et H.L.Yang)变异很大,垂穗披碱草(E.nutans Griseb L.)和老芒麦(E.sibiricus Linn.)的居群按种归类比较清晰等位酶分析结果表明,在4O个居群材料中7个位点发现了22个等位基因。在属的水平上多态性位点百分数为87.5 ,居群内平均多样性指数(Hs)为0.0830,居群间平均多样性指数(Dst)为0.2149,所有多态性位点的遗传分化系数(Gst)为0.7213。在该属中,遗传多样性(HP)和Shannon’S信息指数(He一0.2974;I:0.4565)最大水平上反应了披碱草居群之间的变异。在种的水平上遗传多样性和Shannon’S信息指数分别为0.0800~0.2528和0.
1173~0.3769,而居群内二者分别在0.016O~0.1680和0.0250~0.2433范围内。在属内,遗传分化的分配量依次为种间(38.9 )、种内居群间(33.2 )和居群内个体之间(29.8 )。居群之间基因流(Nm)很低,为0.1932。属于同一种的居群基本能聚类在一起,同时和地域之间亦有明显的关系。9种披碱草属植物虽然不是按照穗的形状(披碱草组)(Sect.Turczaninovia(Nevski)Tzve1.)和老芒麦组(Sect.Elymus))分为两组,但属于披碱草组和老芒麦组内的披碱草关系亲近。以垂穗披碱草为例,海拔是影响遗传差异最重要的因素,其次是地理位置(纬度和经度)。l1个多态性微卫星位点发现有1~8个等位基因,共检测出38个等位变异,平均3.5个等位变异。来自于披碱草的微卫星引物平均4.5个,而来自于小麦的2.2个,披碱草的特异SSR引物在反应遗传多样性方面具有更好的作用和效果。位点ECGA22、ECGA114、EAGA51和WMS43遗传变异信息含量比较高,对于构建披碱草高密度的微卫星种(品种)指纹是很好的选择。种内和种间的遗传多样性变异结构,多个引物具有很好的一致性,大多数基因多样性存在于种内,占总变异的75.74%。无论等位酶还是微卫星标记,在青藏高原地区都拥有遗传丰富的披碱草资源。在披碱草种的多样性指数变化也很大,基因多样性和Shannon’S信息指数变化范围分别在0.1622~0.3619和0.2248~0.5318。相似性和聚类分析结果显示,对居群水平大致可按种来进行划分。SSR标记对不同披碱草居群的聚类和材料间的亲缘关系和地域分布有较好的一致性。披碱草的9个种并没有分成几个明显的组,而以老芒麦和青海披碱草(E.geminatus L.)最近,其次是披碱草和紫芒披碱草亲缘关系,垂穗披碱草和短芒披碱草(E.breviaristatus(Keng)Keng F.)也相对较近。地理位置(纬度和经度)是影响垂穗披碱草居群微卫星遗传差异最重要的因素,其次是海拔。
Study of Genetic Diversity of Elymus 物种
Candidate:YAN Xue—bing Advisors:ZHOU H e,W AN G Kun (1.Grassland Institute of China Agriculture University,北京市100094,China; 2.郑州市College of 动物界 Husbandry,Zhengzhou,河南省Province 450008,China) The genetic diversities of 40 populations of 9 Elymus 物种from China were determ ined, using morphology,allozyme and microsatellite markers for 28 morphological traits,seven allozyme loci and eleven pairs of microsatellite primers. M orphological traits differed greatly among populations and variation trends also deviated within物种and populations. The distance between the flag leaf and the spike of a 植物界 。the growth rate during the seedling to the tillering stage,the rachilla and the 植物界villus grade varied 物种 from species'though the spike shape,the spike pitch number,the plant height,and the palea changed unvaryingly. Dendrogram of relationships showed that,though E. dahuricus Turcz.,E.cyli d,-ic (Franch.)本田技研工业,and E·purpurari, status C.P.W ang et H. L. Yang varied to a great extent,populations of E. t日 Griseb.L..and E.sibiricus Linn. clearly clustered together within the 物种. A llozym e data indicated that, 7 allozyme loci were encoded by 22 allelesacross40 populations . The polym Orphic loci percentage was 87.5 at genus leve1.M ean of diversity index were 0 . 0830 within populations 【Hs)and 0.2149 among populations (Dst).Coefficient of genetic variation across all polymorphic loci was 0.7213.Genetic diversity(H e)and Shannon’s information index ( )had the biggest variation values(H 一0 .2974;一0·4565)among populations of Elymus genus,ranging from 0. 0800 to 0.2528 and 0.1 173 to 0.3769 at 物种level,from 0.01 60 to 0.1 680 and 0.0250 to 0 . 2433 within populations,respectively.of the total genetic variation of Elym us genus, 38.9 existed among物种, 33. 2% amidst populations within the 物种'and 29·8 am id individuals within a population. Gene flow among the populations was sluggish.a mere 0·1932.Populations belonging to the same species norm ally clustered together,and the dendrogram was obviously related to the geographical origins. Though 9 Elymus species were not divided by spike morphology into two groups:Sect.Turczaninovia (Nevski)Tzve1.,and Sect. Ety,,2 ,all the E ,,2物种in the two Sects·showed close relationship.Take E.nutans Griseb . L.for an instance,elevation was the most imDortant factor influencing the 植物界’s genetic difference,while the geographical site(1atitude and longitude)played only a secondary role. M icrosatellite data indicated that there were 1~ 8 alleles in the ll polym orphic SSR loci ,and 38 multiDle alleles,were detected,averaging 3.5 m ultiple alleles. M icrosattelite primers developed from E/y “ sDecies averaged 4·5 alleles,higher than that of wheat of an average of 2 . 2,indicating that m icrosatellite primers developed from Elymus 物种functioned better in determining its genetic diversity . Loci ECGA22、ECGA 1 1 4、 EAGA5 1 and W M S43 transferred more inform ation on the genetic variation , helping to the construction of fingerprint of Elymus 物种. Primers consistently indicated that 75 . 74 of the variation existed am ong populations within the species. Tibetan plateau was genetically resourceful of E ,2 species based on bo .thallozyme and SSR m arkers.Gene diversity and Shannon’s inform ation index at species level varied greatly from 0·1622 to 0·3619 and 0.2248 to 0.5318, respectively . Similarity and dendrogram of clustering among populations showed consistence with their 物种 and geographical origins. Nine E species were not clearly divided into different groups,though E . sibiricus and E.gemi at related most closely,E. d日h ,-ic and E·pu uraristatus came next. So were E.nutans and E . breviaristatus Geographical site (1atitude and longitude)was the most Im portant factor influencing the genetic difference. Elevation came next .
参考资料
维普.www.cqvip.com.2011-04-22