莫尔斯理论
微分拓扑的一个重要分支。通常是指两部分内容:一部分是微分流形上可微函数的莫尔斯理论,即临界点理论;另一部分是变分问题的莫尔斯理论,即大范围变分法。
简介
微分拓扑学中利用微分流形上仅具非退化临界点的实值可微函数(称为莫尔斯函数)研究所给流形性质的分支。它是H.M.莫尔斯在20世纪30年代创立的。由莫尔斯理论得知,微分流形与其上的光滑函数紧密相关,利用光滑函数不仅能研究微分流形的局部性质,而且某些光滑函数例如莫尔斯函数包含了刻划流形整体性质的丰富信息。莫尔斯理论主要分两部分,一是临界点理论,一是它在大范围变分问题上的应用。
理论介绍
确切地说,假设ƒ是n维微分流形M上的实值可微函数,ƒ的临界点p是指梯度向量场gradƒ的零点,即在局部坐标下使得的点。ƒ的全部临界点的性态与流形M本身的拓扑结构有密切的关系,探索这些关系就是临界点理论的主要任务。例如,著名的莫尔斯不等式就是这样一种关系:
,
……
……
,
式中Rk是n维闭流形M的k维模2贝蒂数,即同调群的秩,是M上非退化函数ƒ的指数为k的临界点的个数。这里说ƒ是非退化函数,是指ƒ的任何临界点p均非退化,即在局部坐标下ƒ在p处的黑塞矩阵之秩为n;这个矩阵的负特征值的个数称为临界点p的指数。莫尔斯不等式是H.M.莫尔斯本人在20世纪20年代建立的基本结果,后来有了远为一般的结果。例如,考虑图1中环面M 关于水平切面V的高度函数,其中p,q,r,s是ƒ的四个非退化临界点,其指数分别为0,1,1,2,因为可以适当选择局部坐标,使得在p的邻近 (旋转抛物面),在q的邻近 (鞍面),在r的邻近 (鞍面),在s的邻近 (旋转抛物面)。命不难看出,当α由小变大经过各个临界值时,Mα 的同伦型发生表中所列的变化。
可见,当α从小变大经过指数为λ的临界点时,Mα 的同伦型变化相当于粘上一个λ维胞腔,从而整个环面M的同伦型相当于由一个 0维胞腔、两个一维胞腔以及一个二维胞腔组成的CW复形,这样就把M的同伦型与ƒ 的临界点的性态联系起来了。如果把这个事实推广到一般情形就是:
临界点理论的基本定理 命M是微分流形,是非退化函数,并且任何Mα 都是紧致集。于是,每个Mα 都具有一个有限CW复形的同伦型,从而整个M具有一个至多是可数的CW复形的同伦型:对于指数为λ的每个临界点,这个复形有一个λ维胞腔。
临界点理论的应用中最完美的是对测地线问题的应用,这就是变分学的莫尔斯理论。例如,考虑完备黎曼流形M上两个固定端点p和q之间的测地线问题,即是使弧长为极小的变分问题:
式中 表示M上的逐段光滑道路,这个变分问题的泛极线就是所谓测地线。于是,从p 到q 的所有光滑测地线的性态与流形M的拓扑结构之间是否有什么关系,这就是大范围变分学要研究的主要问题,可以应用临界点理论的框架得到相似的结果。命表示M上从p到q所有逐段光滑道路组成的空间,具有尺度拓扑。式中ρ 表示M上由伯恩哈德·黎曼尺度导出的距离函数;表示ω 上的弧长。
大范围变分学基本定理 命M是完备黎曼流形,沿任何测地线不共轭,则具有可数CW复形的同伦型:对于从p到q每条指数为λ的测地线,这个复形有一个λ维胞腔。
随着拓扑学的发展,莫尔斯理论本身也有很大的飞跃。例如,由于临界点定义为梯度向量场gradƒ 的零点,自然可以考虑n维闭流形M上一般向量场X 的零点与M的拓扑结构之间的关系,即M上的动力系统:
的奇点与M的拓扑结构的关系。S.斯梅尔在某些假设下得到了形式相同的莫尔斯不等式,不过这时αk表示向量场X 的k型零点的个数,bk表示k型闭轨线的条数。斯蒂芬·斯梅尔正是在这个基础上完成了他关于高维庞加莱猜想的卓越工作,这是微分拓扑学的重大成就之一。其次,由于测地线问题是一维变分问题,本来是无限维的空间Ω才能化为有限维流形应用临界点理论来处理。但一般的多维变分问题就无法做到这一点,因而要求发展无限维流形上的临界点理论,直接处理相应的无限维空间Ω,从而把原来的两个方面统一起来。
参考资料
Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike.com/id.php on line 280