原生动物门
原生动物门(食虫类:Protozoa)是动物界的一门,种类约有30000种。根据运动胞器、营养方式及细胞核,一般可将其分为7个纲,分别为鞭毛纲、肉足纲、孢子纲、纤毛纲、梨形虫纲、黏孢子纲和微孢子纲,其中鞭毛纲、纤毛纲、孢子纲和肉足纲4个纲是原生动物门中最重要的纲。
原生动物门的物种是最原始、最简单、最低等的动物。原生动物门绝大多数的是需用显微镜观察的小型动物,最小的种类体长仅有2~3微米。相关物种广泛分布在淡水、海水以及潮湿的土壤中,也有不少是寄生的。它们的每个个体就是一个细胞,其结构可以分为细胞膜(表膜)细胞质和细胞核三大部分,细胞内有特化的各种细胞器,具有如行动、营养、呼吸、排泄和生殖等维持生命和延续后代所必需的一切功能。
研究简史
物种起源
已描述的原生动物约6.8万种,其中一半是化石种类,现生种类中,营自由生活的占2/3,寄生生活的占1/3;多细胞动物的单个细胞一般不能脱离其他细胞而独立生活,更不能像原生动物那样具有生命的一切功能。原生动物包括相当多样性的生物类群,在系统发育过程中它们可通过多种途径进化到多细胞动物。例如多孔动物中就有与领鞭毛虫十分相似的鞭毛细胞;群体的植物性须苔属的团藻虫类开始有细胞间的功能分化──有专司营养和专司繁殖的个体,被认为在进化过程中可能是刺胞动物门的祖先。人们推测无肠目的涡虫纲可能起源于原始的多核纤毛虫,从而设想低等的多细胞动物多发性地起源于原生动物的不同类群。
300多年前,A.Van安东尼·列文虎克用约放大270倍的透镜,第一个看到了很多自由生活和寄生生活的原生动物,他把眼虫描述为“中间绿、两端白”的虫子,后人尊称他为原生动物学之父。
1758年C.von林奈应用双名法命名了巨团藻虫,大巨变虫。G.A.戈尔德富斯1817年第一年用Protozoa(原生动物)一词,但他把刺胞动物门也包括进去。对原生动物下了正确定义的是C.T.E.von菲利普·弗朗兹·冯·西博尔德(1845)。C.G.埃伦贝格1838年把观察的原生动物进行分类描述,提出初步的分类系统。20世纪初,从原生动物的经典分类研究逐步扩展到生理、营养、生态、遗传等领域。50年代起,由于电子显微镜的应用,使原生动物的研究进入到亚显微结构的水平。
系统发展
原生动物是单细胞动物,从原则上讲,在亿万年的发展过程中,首先是由无机化合物发展到简单的有机化合物由简单的有机物发展到复杂的有机物,发展成像蛋白质、核酸等那样复杂的大分子,发展出具有新陈代谢机能、但还无细胞结构的原始生命。这是最初的生活物质、生命形态。以后又经过漫长的年代,才由非细胞形态的生活物质发展成为有细胞结构的原始生物。由原始生物近代发展分化出原始的动物和植物。进而发展成现代的形形色色的原生动物。
在原生动物这四纲中哪一类是最原始的:过去有些人认为肉足纲阿米巴虫这一类动物是最原始的。因为其结构简单,可是它是吞噬性营养,它需要吃其他原生动物或植物等,所以它不会是最早出现的。纤毛门结构比较复杂,且为吞噬性营养,也不可能是最早出现的。孢子纲的动物全是寄生的,寄生的种类是由独立生活的种类发展而来的,因此也不可能是最早出现的。只有鞭毛纲具有3种营养方式,因此一般认为鞭毛细是原生动物中最原始的一纲。
在鞭毛纲中到底是哪一类最早出现的这个问题还有争论。过去有些人认为最目出现的是有色须苔属。因为它可以自己制造食物,但因为色素体结构比较复杂,不可能想象最早出现存如此复杂的结构。所以又有些人认为最早出现的不是有色须苔属,而是无色渗透性营养的鞭毛虫,因为无色渗透性营养的鞭毛虫一般构造比较简单,这种说法看来可以被接受。因为物质的发展是由简单到复杂,而在单细胞动物出现以前,已经存在着有机化合物的条件,当然并不是说由现在的无色鞭毛虫发展来的,而可能是有些类似现在的无色鞭毛虫,假定把它叫做原始鞭毛虫。由原始须苔属经过漫长的岁月,形成现在的形形色色的鞭毛虫。现在有人认为领鞭毛虫是最原始的,它是所有多细胞动物的祖先。
肉足纲也是从原始须苔属发展来的,因为很多肉足虫如有孔虫门,其配子具鞭毛,根据生物发生津,说明其祖先是具鞭毛的。又某些种类如变形鞭毛虫具鞭毛和伪足,这可说明鞭毛虫与肉足虫亲缘关系密切。纤毛门可能是从原始鞭毛虫发展成鞭毛虫的过程中,又分出一支形成的,因为纤毛与鞭毛的结构是一致的说明这二纲的关系较近。孢子纲因全为寄生的,追溯其来源较困难。大致可看出有两个来源如疟原虫、球虫,其配子都具鞭毛,可能来源于鞭毛纲,而粘孢子虫,其营养体全为变形体,可能来源于肉足纲。
生活习性
营养方式
营养方式包括植物性营养、动物性营养、腐生性营养。
呼吸
绝大多数原生动物的呼吸作用(respiration)是通过气体的扩散(diffusion),依靠体表从周围的水中获得氧气。线粒体是原生动物的呼吸细胞器,其中含有三羧酸循环的酶系统,它能把有机化合物完全氧化分解成二氧化碳和水,并能释放出各种代谢活动所需要的能量,所产生的二氧化碳还可通过扩散作用排到水中。少数腐生性或寄生的种类,它们生活在低氧或完全缺氧的环境下,有机物不能完全氧化分解,而是利用大量的糖的发酵作用产生很少的能量来完成代谢活动。
运动
原生动物的运动方式基本上可以分为两大类,一类是没有固定运动类器官的种类,另一类是具有固定运动类器官的种类。
排泄
原生动物代谢产生的二氧化碳和其他一些可溶性代谢废物,都可以借扩散作用从体表排出,除此之外,在淡水中生活的种类体内还有一种重要的排泄类器官,是由类似于细胞膜的结构包围而成,呈泡状,泡内含有水和可溶性废物,称为伸缩泡(contractile vacuole)。
在淡水中生活的原生动物体内渗透压高于外界的渗透压,水分会不断地进人体内,伸缩泡就起到不断地收集水分并将水分排出体外的作用,溶于水中的一些代谢废物也随之被排出体外,如果没有伸缩泡的结构,淡水中生活的原生动物就会因体内水分过多而胀破细胞。海水中有大量盐分,其渗透压与细胞内渗透压大致相等,所以海水中生活的种类一般没有伸缩泡。
应激性
原生动物对外界的刺激具有趋避性,当遇到食物时,它们会向有食物的地方趋集,当遇到有害刺激时,它们又会避开,这种应激性对它们的生存有很大意义。
物种分类
主要特征
外形特征
绝大多数的原生动物是显微镜下的小型动物,最小的种类体长仅有2—3μm,例如寄生于人及脊椎动物网状内皮系统细胞内的利什曼原虫(Leishmania),大型的种类体长可达7cm。
结构特征
结构原生动物的每个个体就是一个细胞,其结构可以分为细胞膜(表膜)、细胞质和细胞核三大部分。
1.细胞膜 原生动物的体表有一层连续的界膜,是非常薄的原生质膜,在显微镜下几乎难以辨认,这层膜特称为表膜(pellicle)。表膜坚韧具有弹性,能使虫体保持固定的形状,其层数和构造随原生动物种类而不相同。
原生动物门(6张)
某些种类的体表除固有的细胞膜外,还有由原生质分泌物形成的外壳,如表壳虫的甲壳质壳,有孔虫门类的钙质壳等。有的原生动物的细胞质中还有骨骼,如放射虫(Sphaerostyius ostra—cion)体内的几丁质中央囊和硅质骨针等。
2.细胞质 在普通光学显微镜下观察,细胞质由外层较透明的外质和内层含有较多颗粒的内质组成。在电子显微镜下观察, 细胞质由复杂的胶状基质和包埋在其中的各类细胞器组成,细胞器类似于高等动物体内的各器官,分工承担着各项生理机能。
3.细胞核 原生动物细胞核的结构同多细胞动物细胞核的结构相同,由核膜、核仁、核基质和染色质组成。一般原生动物只有一个核,也有多个核的种类,有些原生动物细胞内还同时具有两种细胞核:一种是大核,与细胞代谢有关;一种是小核,与生殖有关。在生活史的不同时期细胞核的形态结构常有变化。
1 整个身体由单个细胞组成原生动物即单细胞动物。
具有一般细胞所有的基本结构:细胞膜、细胞核、细胞质、细胞器(线粒体、核糖体、内质网等)。这种单细胞又是一个具有一切动物特性和生理机能的、独立完整的有机体。如具有运动、消化、呼吸、排泄、感应、生殖等机能。
以上生理机能是由各种特殊的细胞器来完成的:如:运动胞器———纤毛、鞭毛;摄食胞器———胞口、胞咽、食物泡;感觉胞器———眼点;调节体内水分的胞器———收集管、伸缩泡。
原生动物的定义:原生动物是一个完整的、能营独立生活的、单细胞结构的有机体。
2 身体微小。
3 原始性:无论是形态结构还是生理功能在各类动物中是最简单、最原始的,反映了动物界最早祖先类型的特点。
在不良环境下能形成包囊,在失去大部分结构后缩成一团,并分泌胶质在体外形成包囊膜,使自身与外界环境隔开,新陈代谢水平降低,处于休眠状态。等环境条件良好时又长出相应结构,脱囊而出,恢复正常生活。
5 群体单细胞动物。特点:由多个单细胞个体聚合而成的群体,但绝大多数群体内的单细胞个体具有相对独立性。如盘藻、空球藻、实球藻、团藻等。
分布范围
分布在海洋、陆地(包括淡水、盐水、土壤、冰、雪以及温泉中)和空气。
益处于危害
益处
土壤原生动物对增加土壤肥力有作用,在土壤群落中以细菌特别是有害细菌为食的原生动物对改良土壤细菌群落起到了一定的作用。
利用原生动物纤毛虫来消除有机废物,有害细菌以及对有害物质进行絮化沉淀。
一些浮游原生动物也为鱼类提供了大量饲料。
危害
据报道,至少有28种原生动物是人体寄生昆虫,危害人体健康,全世界至少有四分之一人口患寄生虫病。在我国重点防治的有五大寄生虫病:血吸虫病、疟疾、黑热病、丝虫病病、钩虫病,其中疟疾和黑热病就是分别由疟原虫和利什曼原虫引起的。另外,还有锥虫引起睡眠病、毛滴虫病、阿米巴肠病等都是危害较重的人体寄生虫病。焦虫、球虫等危害家畜,粘孢子虫、小瓜虫、车轮虫等危害鱼类。
形态功能
原生动物的形状变化很大。有原生质随意流动、形状不定的阿米巴虫,有结构精巧、宛如雕刻着花纹的工艺品的放射虫和有孔虫门。同一种类可因处于生活史的不同时期或不同的环境条件而改变形状。个体大小一般在10微米~1毫米之间。最小的只有2微米(如寄生在红细胞中的巴倍虫属,大的长达19厘米(如早新生代的钱币虫)。
1.细胞膜:原生质体外面有一层细胞膜,使原生动物和外界环境隔开。任何物质渗入体内或排出体外都必须通过这层细胞膜。植鞭毛纲中的衣滴虫性阴道炎等在细胞膜外还包有细胞壁,但在眼虫则为有弹性的表膜。正是由于这种表膜构造,使大多数原生动物既有比较稳定的形状,又能够行动自如。阿米巴虫的表膜薄,有利于伸出伪足。有些须苔属、肉足虫、纤毛门有硅质、钙质、纤维质的外壳,人们认为这些外壳的基质是在细胞内形成后再移到表膜外的。
2.细胞质:一般可分为透明、致密的外质和液态、流动的内质。细胞质中含有各种颗粒(油滴、淀粉、副淀粉、色素等)和各种细胞器(线粒体、高尔基体、溶酶体等)。高尔基器在鞭毛虫中很多,在纤毛虫中缺如或不发达。高尔基器与细胞合成产物的精制、加工和储存有关,如在合尾滴虫性阴道炎、鳞壳虫、放射虫等体表呈图案排列的鳞片,这些鳞片就是在高尔基器的泡囊内形成的,然后这些泡囊移到内质膜,鳞片再按一定的图案排列在体表面。电镜观察揭示大多数纤毛虫的线粒体的内膜向内突入,形成管状的嵴,但在一些须苔属是片状或盘状嵴,在阿米巴虫和簇虫是泡囊嵴。寄生在反刍亚目胃中的厌氧纤毛门的线粒体是没有嵴的囊,肠袋虫的线粒体则是有嵴与无嵴的混合体。许多植物性鞭毛虫和某些其他原生动物有呈红-紫色的色素颗粒,称为血色素,如雨红球虫、吉尼眼虫、红眼虫、虫。天蓝喇叭虫的外质含有1种喇叭色素,因而虫呈蓝色。
3.细胞核:根据染色质的构造可把细胞核分为泡状核和致密核两类。泡状核常见于肉足虫和鞭毛虫,致密核常见于纤毛门的大核中。在须苔属、肉足虫、孢子虫中,有的种类有很多细胞核,但都是同型核。许多原生动物在营养期间,细胞核的染色体是多倍体,有些则为二倍体或单倍体。纤毛门有大、小核之分,小核是二倍体,大核是高度多倍体。大核的大小、形状、数量变化很大,在形状上也各不相同差异很大。大、小核内均含脱氧核糖核酸(DNA)。一般地说小核控制细胞的遗传,大核控制细胞的营养,但这不是绝对的。已知大核在遗传上能控制表型,说明大核中也有某些控制遗传的因子。只有大核而没有小核的品系虽然能分裂和生存,但最后还是会老化。在接合生殖过程中,大核退化,由小核产生新的大核,这说明大核虽有自主性,但仍要依赖小核。纤毛门的核二型性在整个生物界是独特的。须苔属的细胞核与毛基体系统有密切关系。鞭毛的基体有根丝体联系到核上。基体与核在数量上有一定比例。在低等的鞭毛虫中一般为2∶1,即2个基体,1个细胞核。随着进化而扩大比例,在超鞭毛目中已是100~1000∶1了。
4.色素体及其附属胞器:大部分植物性鞭毛虫具有与光合作用有关的色素体和红色的眼点。眼点由1至多个红色小球构成,对光十分敏感,能引导鞭毛虫游向阳光处。色素体有4类:叶绿素、胡萝卜素、叶黄素和藻胆素。由于所含色素体的组成和分量不同,植物性须苔属在颜色上差异很大,有绿、黄、蓝等。有色鞭毛虫如长期处在黑暗而有机质丰富的环境中,色素体和眼点都退色,不再进行光合作用,它们用身体表面的渗透功能吸收营养或直接通过胞口吞入食物(如眼虫)。
5.运动胞器:与鞭毛虫、肉足虫、纤毛门相应的运动胞器有鞭毛、伪足和纤毛。孢子虫是寄生的,无专门的运动胞器,借身体的屈曲、滑动等方式移动,仅在生活史中的变形期,其小配子可借伪足和鞭毛运动。鞭毛虫中除超鞭毛虫有许多鞭毛外,一般常为1~2根,少数有8根。鞭毛是细胞质的丝状突起,常自身体前端伸出,少数自体侧、腰沟、体后伸出成舵鞭毛。鞭毛还有捕食、附着、感觉的功能。它由两部分组成:中央为1根有弹性的、由若干平行的纤维组成的轴丝,轴丝外部包着原生质鞘。原生动物中的鞭毛和一切真核生物生物中的鞭毛一样,是“9+2”的格式(见纤毛、鞭毛)。鞭毛是从表膜下埋在细胞质内的、可染色的毛基体亦称基体,在纤毛门中称为动基体延伸到体外。一般须苔属有2个基体,位在细胞顶端,但只有一个基体上伸出一根鞭毛,另一个基体是秃的(如低等的锥虫)或有一点鞭毛的痕迹(如眼虫)。在较高等的动鞭毛虫中,基体可有2、6、8甚至数百个不等。在超鞭毛虫中有2000根左右的鞭毛,基体数量总比鞭毛多5个,这5个不长鞭毛的基体在个体发育上具有重要的意义。基体本身不分裂,新的基体在靠近原有的基体处形成。电子显微镜观察证实基体的外周微管排列格式与鞭毛相似,只是在双重体中增加了第3根,成为三重体。
在寄生的须苔属中与鞭毛有关的构造还有波动膜、肋、脊突、副基器、副基丝、轴杆、盾、锤、纺锤簇等。鞭毛自顶端向基部作波浪运动,有平面的和螺旋的两种波浪运动形式,均可使虫体向任何方向移动。伪足根据形态可分为叶足、丝足、根足(又称网足)和轴足四类。伪足除了行动之外,还有捕食、固着、感觉的功能。关于伪足的变形运动已研究了100多年,至今仍未解决。一般认为当阿米巴虫行动时,内质从半液态的溶胶转化为半固态的凝胶,凝胶有收缩性,它对溶胶产生微压,于是溶胶便向最薄弱的地方流去,并形成伪足。因此伪足像个凝胶管,溶胶被迫向管子流去。溶胶达到凝胶管前端接近表膜处就转化为凝胶。在后部收缩的凝胶又转化为新的溶胶。如此不断重复,溶胶不断向前流动,身体后部就不断缩小,结果伪足便增大而成为身体的主要部分,同时前面又不断形成新的伪足。这种变形运动常见于叶足型的种类。丝足、网足、轴足的运动便是另一形式,因为这类伪足很细,中央有较硬的纤维,溶胶像传送带似地沿着纤维向两个相反方向流动。纤毛与鞭毛一样,也是由轴丝和鞘组成,轴丝的亚显微结构也是按“9+2”的格式排列。每根纤毛的基体伸出一细纤维,位于基体的左边,并与同一行列内其他纤毛基体伸出的纤丝相连结,成为纵行的动纤丝。纤毛比鞭毛短而数量多。纤毛有运动、捕食和感觉的功能,而且随分工不同而特化。有的纤毛愈合成小膜,在口缘成带状排列,动作有力而协调,便于将食物驱入口中。有的纤毛愈合成大的波动膜,突出在口缘之外。在下毛类中风,背部纤毛退化,腹部纤毛融合成毛笔状的棘毛。原生动物中运动最快的是纤毛门。每根纤毛在打水时,分效力击打和恢复击打两种。整个纤毛的协调击打、沿着身体产生4种类型的节律波。
6.纤维构造:大多数原生动物都有收缩性,有的种类特别明显,如喇叭虫和旋口虫的肌丝,钟虫柄内的牵缩丝,其收缩性都很强。电子显微镜证明细胞质内都有纤维结构,除了能帮助身体收缩外,还有帮助运动(如簇虫亚纲)、保持体形(如蛙片虫、小瓜虫等)的功能。
7.支持和保护胞器:这类胞器是细胞外的构造,如柄、壳、内外骨骼、孢囊、孢子等,这些结构是多细胞动物所没有的。属于内骨骼的如动须苔属的轴杆、肋,放射虫辐射伸出的刺或骨针,裸口类纤毛门口器内的咽篮、刺杆等,多半是起支持和保护的作用。属于外骨骼最常见的是在加厚的表膜外有一层保护的壳。壳有甲壳质、硅质、硫酸锶等成分,有时还有石灰质沉淀。有的壳是整片的,有的是鳞片状的,有的有精美雕刻的图案。原生动物还能从自体内射出各种突出质,用以进行防卫、攻击和取食。纤毛门有7种突出质:刺丝泡(如草履虫)、粘丝泡(如四膜虫)、毒丝泡(如长颈虫)、系丝泡(在吸管虫的触手上)、纤丝泡(如拟小胸虫)、杆丝泡(如管刺虫)和网丝泡(如栉毛虫)。须苔属中也有刺丝泡和粘丝泡,如腰鞭毛虫有刺丝囊、粘孢子虫有极丝,它们起着固着的作用。
8.伸缩泡和其他各种液泡:生活在淡水的原生动物有1至多个伸缩泡生活在海水中的和寄生的原生动物一般没有伸缩泡。阿米巴虫只有1个伸缩泡,构造简单,位置不定,伸缩泡的周围有小囊泡,线粒体密度较大。草履虫有前后两个伸缩泡,各有1个中央泡和6根辐射伸出的收集管,收集管上有分枝小管与内质网的管道系统相连。伸缩泡的主要功能是调节渗透压。食物泡根据摄食情况分为两种:含大颗粒食物的吞噬泡和含溶解性营养物质的吞饮泡。食物颗粒或营养物质进入食物泡后,食物泡与细胞质内的溶酶体合并,食物被溶酶体释放的酶消化,未经消化的废物被排出体外。
生理特征
1.繁殖和生命周期:原生动物的生命周期包括生殖期和孢囊。有些种类已失去形成孢囊的能力。生殖期可分为无性生殖和有性生殖。大多数原生动物无性生殖用二分裂法。须苔属是纵分裂,纤毛虫是横分裂。缘毛类纤毛虫外表看来如纵分裂,但是细胞内各成分(如核、口围纤毛带)仍是横分裂。疟原虫、球虫则行裂体生殖。吸管虫在体内或体外生出许多芽体(出芽)。有些多核的原生动物如胶丝虫、多核阿米巴虫偶尔会分裂成2至数个小的、仍是多核的个体(原生质团分割)。以上4种方式只有出芽生殖还保留亲体,其余均无亲体,后代都是等同的。原生动物有性生殖有3种:融合、接合、自体受精卵和假配。自体受精与接合生殖相似,但只在一个个体内进行。小核分裂数次,其中有两个配子核融合成合核,其余退化。合核分裂形成新的大、小核。假配与接合生殖一样,要求两个个体接触,但没有配子核的交换,每个个体完成自体受精过程后各自分开。在草履虫中曾发现过这两种特殊的核现象。
寄生原生动物的生活史比较复杂。大多数孢子生活史包括3个时期:裂体生殖期、配子生殖期和孢子生殖期。有明显的无性世代与有性世代的交替。孢子生殖期是由合子产生的孢子母细胞形成孢子后,再进一步形成子孢子。子孢子一般包有外壳,能抵抗不良环境,有利于传布。
2.生态因素:影响原生动物的环境因子有以下几个方面:①水分,原生动物不论怎样小也要求有最低限度的水分。
②温度,原生动物可生活在地球的两极和冰雪之中,也可生活在温度较高的温泉中,如中国的西藏自治区67℃的温泉中,就生活着鳐颌砂壳虫。在实验室内可用冰冻方法保存原生动物,在-95℃时梨形四膜虫能生存4个月,寄生的牛胚毛滴虫能生存5年半。天然条件下5~35℃对大多数原生动物是适宜的。
③溶解氧,大部分原生动物需要氧气以维持生命活动。但在深水湖的湖底、污水厌氧发酵池中生活的须苔属、纤毛虫是厌氧的,大多数寄生原生动物也是厌氧的。
④溶解的二氧化碳,大多数原生动物能耐受低浓度的二氧化碳式气枪。对植物性鞭毛虫来说,CO2是重要的碳源。
⑤pH,在pH值是2.2~9.2的范围内都可能生存。
⑥盐度,原生动物能分布在淡水、咸淡水、海水、盐水中。大多数种类只能生存在一定的盐度范围内,有的种类是广盐性的,利用伸缩泡调节体内的渗透压以适应环境盐度的变化。
⑦光,光是植物性鞭毛虫进行光合作用的能量来源。在强光下,团藻虫和眼虫能躲避。在西藏自治区雪山上看到的衣滴虫性阴道炎能产生抵抗强光的保护色素──红色素,致使积雪呈红色。
⑧底质、水流、风浪等,放射虫身体中的空泡能扩大和缩小,以调节自身在水中的深度,不致受风浪的吹逐。有一种生活在潮间带水潭内的眼急游虫,其生活习性能符合潮汐的节奏。退潮时水潭露出,眼急游虫游到水面取食、分裂和繁殖。在潮水来到之前,它就到水潭的底部形成包囊。包囊粘于底部,以免被潮水带走。
⑨食物和营养,营养方式有植物式、动物式和腐生式3种。大部分寄生原生动物是腐生式营养,近来发现有几种孢子虫能用一种特别的胞口吞食宿主红细胞的细胞质而形成食物泡。
此外,原生动物还需要某些生长因子如维生素B1、B12、H等。寄生原生动物是从自由生活的原生动物演化来的,在长期适应过程中形态和生理发生了变化,如失去了摄食胞器,增设了固着胞器(吸盘、极丝、柄等),提高了繁殖能力和完善了转移新宿主的途径(从单一宿主发展为中间宿主和储存宿主)。此外,原生动物也可被其他生物寄生或与其他生物共生,例如,有孔虫中有寄生的小阿米巴虫,簇虫体内有寄生的微孢子虫,双小核草履虫体内的Kappa粒也是细菌,在许多纤毛虫体内都发现有共生绿藻门。
3.变异与遗传:基因变异的潜力在双倍体和多倍体的原生动物种群中比单倍体的大,在有性生殖过程中又比无性生殖过程中大。在衣滴虫性阴道炎的不同性和纤毛门中不同交配型之间进行交叉受精卵,就能扩大新基因组合的范围。纤毛虫进行接合生殖必须具备两个条件:①两个体必须属于适当的交配型,②其交配型纯系必须是成熟的龄期。在一个种内有数个遗传上相分离的基因群,每个基因群有相同的基因库,但有几个不同的交配型。在同一基因群内的交配型互相接合的几率可达95%。已知双小核草履虫有14个基因群,各有两个交配型,绿草履虫有6个基因群,各基因群内有2~3个交配型。在原生动物中下毛目是进化比较高等的一类,其皮层上有许多按一定格局分布的复杂的纤毛和非纤毛结构。这些结构的遗传是自主性的。纤毛虫纤毛模式的形成和决定很难完全归结为基因对表型的控制作用或是某个基因产物的作用。在皮层和毛基体内至今还没有找到遗传信息的载体脱氧核糖核酸分子。因此有人认为遗传性不是核酸分子所能独揽的。
系统分类
一般认为原生动物的祖先是一些古老的“植物界动物”性的类群,称为古代的植须苔属。从古代植鞭毛虫分为几个不同的根株,每个根株上升到现代原生动物的祖先。这是一种多系统的理论。有人认为从古代植鞭毛虫演化为肉足虫。孢子虫是双重起源的,一类起源于肉足虫,一类起源于动鞭毛虫。纤毛门直接起源于鞭毛虫,只是还说不清楚大、小核的分化和接合生殖的演化。无论哪种观点都是从现代的原生动物中进行推测,缺乏充分的根据。经典的分类把原生动物门分为4个纲──鞭毛虫纲、肉足虫纲、孢子虫纲和纤毛虫纲。随着发现种类的增加,新技术(如电子显微镜等)的应用,分类学家对原生动物传统的分类系统进行了修正。比较一致的有:
①鉴于许多须苔属的生活史中有变形期,许多肉足虫的生活史中有鞭毛期,有的种类本身就兼有鞭毛和伪足,所以把两大纲合并为肉鞭动物亚门。②传统的孢子虫纲内有些种类的生活史中并不出现孢子,应当分出来。电子显微镜观察发现某些种类在子孢子或裂殖子时期其顶端有一个复杂的亚显微结构──由极环、类椎体、表膜下微管、微孔、棒状体、微丝组成的顶复体,因而将其独立为顶复动物亚门,与微孢子虫亚门、粘体动物门、囊孢子虫亚门并列。③传统的分类中把盘蜷虫类放在肉足纲内。现已证明它的丝网并不是伪足,而是坚硬的、无生命的丝,因而独立为盘蜷动物亚门。下列的分类系统主要参照原生动物学家协会分类和进化委员会主席N.D.理查德·莱文于1980年与16位分类学家协商的一个方案。本文把该方案中7个门下降为7个亚门、亚门下降为超纲,在肉足超纲内设有纲、亚纲和总目,原生动物仍作为一个门:
研究意义
已知有30种原生动物直接侵袭人体。土壤原生动物能帮助植物碎片分解成有用的腐殖质。有孔虫门和放射虫都有完整的化石保存,可用以鉴定地层年龄和划带。它们也是很好的海流水团动力学的指示生物。等辐骨放射虫利用硫酸来制造骨骼,因此可作为鉴测海洋放射物质污染的指示生物。原生动物在生物学的细胞、遗传、生理、生物化学等领域中常被用作实验材料。
原生动物是动物界重最低等的一类真核单细胞动物,个体由单个细胞组成。与原生动物相对,一切由多细胞构成的动物,称为后生动物。原生动物个体一般微小,绝大多数仅在2-5mm之间。原生动物生活领域十分广阔,可生活于海水及淡水内,底栖或浮游,但也有不少生活在土壤中或寄生在其它动物体内。原生动物一般以有性和无性两种世代相互交替的方法进行生殖。
1.意义:①已知有30种原生动物直接侵袭人体,至少有1/4的人类因有寄生原生动物而患病。每年有3.5亿人患疟疾,在非洲、太平洋群岛、南亚和东南亚地区,每年因患疟疾而致死的约100万人。非洲有一种锥虫引起的非洲睡眠病,急性感染时也能致死。南美洲有700万人因感染锥虫而得卡格斯氏病,使人心力衰竭乃至死亡。利什曼虫引起的黑热病在东南亚、南亚、非洲都有分布,也能引起人死亡。阿米巴肠病虽很少致死,但阿米巴虫痢疾能使肝肿大,美国有1/10以上的人患此病。中国五大寄生虫病有两类属于原生动物。90年代以来发现在土壤、水中生活的阿米巴能侵入人的中枢神经,引起原发性阿米巴脑炎。家畜、家禽等肉食动物也有由几十种原生动物引起的疾病。火鸡中的寄生球虫使美国损失几亿美元。猪弓形虫病是人和家畜(猪、牛、羊)中最流行的疾病之一。海洋中的红潮就是由腰鞭毛虫大量繁殖而引起的,它分泌的毒素可杀死或积累于鱼、虾、贝类,人吃后也会引起死亡。有一种金滴虫叫小定鞭虫,能分泌溶血性贫血的毒素,在以色列有使鱼大量死亡的报道。
②土壤原生动物能促进土壤中有机物质的循环,能帮助植物碎片分解成有用的腐殖质,能改变微生物的群落结构等。
③有孔虫门和放射虫都有完整的化石保存,可用以鉴定地层年龄和划带,因而成为石油、探矿中的重要指相生物。在海洋方面,它们也是很好的海流水团动力学的指示生物。
④等辐骨放射虫利用硫酸锶(SrSO4)来制造骨骼,因此可作为鉴测海洋放射物质污染的指示生物。利用原生动物群落的结构与功能参数可监测、评价和预报水质的污染程度。
⑤由于原生动物具有材料易得、大小适中、繁殖期短、容易培养、便于模拟等优点,在生物学的细胞、遗传、生理、生物化学等领域中,它们常被用作实验材料。
在医学领域中也常用原生动物追踪抗癌药物在机体中的作用。寄生原生动物应用组织培养以取代天然的宿主,以便准确地观察寄生虫的生活情况,提出更好的防治方法。寻找免疫血清也是研究寄生原生动物的新途径。纤毛门纯系为防止种群衰老而用接合生殖、自体受精卵等方式活化细胞核,这对研究人的衰老很有启示。在研究原生动物系统发育方面,提出用生物化学手段解决原生动物的种间关系。在纤毛虫皮层结构非基因控制的遗传现象的研究中,如果能解决机理问题,将是对遗传学的一个新贡献。
2.与人的关系:原生动物不仅对了解动物演化是重要的,而且和人生的关系也比较密切。比如寄生的种类直接对人有害。还有些对国民经济有直接关系,一些寄生在害虫体内的原生动物,也是研究害虫生物防治的材料。自由生活的原生动物。有些种类能污染水源,造成赤潮危害渔业。另方面,有的种类可以作为有机污染的指标动物。大多数的植须苔属。纤毛门和少数的根足虫是浮游生物的组成部分,是鱼类的自然饵料。海洋和湖泊中的浮游生物又是形成石油的重要原料。有孔虫。放射虫的壳对地壳形成有意义。因此它们又是探测石油矿的标志。
此外,原生动物结构较简单,繁殖快,易培养,因此是研究生物科学基础理论的好材料,如眼虫、阿米巴虫、草履虫。生物科学基础理论中,细胞生物学是一个重要的部分,而原生动物本身就是单个细胞,因此在揭示生命的一些基本规律中,原生动物已经显示并将耍显示其更大的科学价值。
危害及预防
在自然界中,有一些微生物是致病微生物,危及动植物和人类的生命,如“严重急性呼吸综合征”、“艾斯病”、“禽流感病毒”等传染病,人们时刻都在警惕和防御。人类在长期的生活实践以及科学研究中,学会培养良好的卫生习惯,制定一系列应急防御机制,采用消毒、隔离、接种新型冠状病毒疫苗等预防措施,并应用抗菌素、抗病毒素等药物,以及以菌治菌等科学的治疗方法,为致病微生物作持久战。
词条
旅鼠中华绒螯蟹丰年虾青蛙树袋熊金毛寻回犬鳀鱼牡丹鹦鹉属滑齿龙属
参考资料
1、http://www.jledu.com.cn/jajb/tupian/shengwu1.HTML
2、http://硫氰化钾雅虎com/question/1406110714462.html
3、http://jpkc.xmu.edu.cn/dwswx/resource/动物界%20biology/3-1.files/slide0041.htm